The A2 Invariant
From Knot Atlas
Jump to navigationJump to search
We compute the (or quantum ) invariant using the normalization and formulas of [Khovanov], which in itself follows [Kuperberg]:
(For In[1] see Setup)
In[2]:= ?A2Invariant
A2Invariant[L][q] computes the A2 (sl(3)) invariant of a knot or link L as a function of the variable q. |
As an example, let us check that the knots 10_22 and 10_35 have the same Jones polynomial but different invariants:
In[3]:= |
Jones[Knot[10, 22]][q] == Jones[Knot[10, 35]][q] |
Out[3]= | True |
In[4]:= |
A2Invariant[Knot[10, 22]][q] |
Out[4]= | -12 -8 -6 -4 2 4 6 8 10 12 14 18 -1 + q + q + q - q + -- - q - 2 q + q - q + q + q + q 2 q |
In[5]:= |
A2Invariant[Knot[10, 35]][q] |
Out[5]= | -14 -12 -10 -8 2 2 2 6 8 10 14 16 18 20 q + q - q + q - -- + -- + q - q + q - 2 q + q - q + q + q 4 2 q q |
The invariant attains 2163 values on the 2226 knots and links known to KnotTheory
:
In[6]:= |
all = Join[AllKnots[], AllLinks[]]; |
In[7]:= |
Length /@ {Union[A2Invariant[#][q]& /@ all], all} |
Out[7]= | {2163, 2226} |
[Khovanov] ^ M. Khovanov, link homology I, arXiv:math.QA/0304375.
[Kuperberg] ^ G. Kuperberg, Spiders for rank 2 Lie algebras, Comm. Math. Phys. 180 (1996) 109-151, arXiv:q-alg/9712003.