T(19,2)
|
|
Visit [[[:Template:KnotilusURL]] T(19,2)'s page] at Knotilus!
Visit T(19,2)'s page at the original Knot Atlas! | |
T(19,2) Quick Notes |
T(19,2) Further Notes and Views
Knot presentations
Planar diagram presentation | X13,33,14,32 X33,15,34,14 X15,35,16,34 X35,17,36,16 X17,37,18,36 X37,19,38,18 X19,1,20,38 X1,21,2,20 X21,3,22,2 X3,23,4,22 X23,5,24,4 X5,25,6,24 X25,7,26,6 X7,27,8,26 X27,9,28,8 X9,29,10,28 X29,11,30,10 X11,31,12,30 X31,13,32,12 |
Gauss code | -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 1, -2, 3, -4, 5, -6, 7 |
Dowker-Thistlethwaite code | 20 22 24 26 28 30 32 34 36 38 2 4 6 8 10 12 14 16 18 |
Conway Notation | Data:T(19,2)/Conway Notation |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(19,2)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 19, 18 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (45, 285) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 18 is the signature of T(19,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[19, 2]] |
Out[2]= | 19 |
In[3]:= | PD[TorusKnot[19, 2]] |
Out[3]= | PD[X[13, 33, 14, 32], X[33, 15, 34, 14], X[15, 35, 16, 34],X[35, 17, 36, 16], X[17, 37, 18, 36], X[37, 19, 38, 18], X[19, 1, 20, 38], X[1, 21, 2, 20], X[21, 3, 22, 2], X[3, 23, 4, 22], X[23, 5, 24, 4], X[5, 25, 6, 24], X[25, 7, 26, 6], X[7, 27, 8, 26], X[27, 9, 28, 8], X[9, 29, 10, 28], X[29, 11, 30, 10],X[11, 31, 12, 30], X[31, 13, 32, 12]] |
In[4]:= | GaussCode[TorusKnot[19, 2]] |
Out[4]= | GaussCode[-8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -1, 2,-3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19,1, -2, 3, -4, 5, -6, 7] |
In[5]:= | BR[TorusKnot[19, 2]] |
Out[5]= | BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}] |
In[6]:= | alex = Alexander[TorusKnot[19, 2]][t] |
Out[6]= | -9 -8 -7 -6 |
In[7]:= | Conway[TorusKnot[19, 2]][z] |
Out[7]= | 2 4 6 8 10 12 14 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[19, 2]], KnotSignature[TorusKnot[19, 2]]} |
Out[9]= | {19, 18} |
In[10]:= | J=Jones[TorusKnot[19, 2]][q] |
Out[10]= | 9 11 12 13 14 15 16 17 18 19 20 21 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[19, 2]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[19, 2]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[19, 2]], Vassiliev[3][TorusKnot[19, 2]]} |
Out[14]= | {0, 285} |
In[15]:= | Kh[TorusKnot[19, 2]][q, t] |
Out[15]= | 17 19 2 21 3 25 4 25 |