T(11,4)
|
|
Visit [[[:Template:KnotilusURL]] T(11,4)'s page] at Knotilus!
Visit T(11,4)'s page at the original Knot Atlas! | |
T(11,4) Quick Notes |
T(11,4) Further Notes and Views
Knot presentations
Planar diagram presentation | X3,53,4,52 X20,54,21,53 X37,55,38,54 X21,5,22,4 X38,6,39,5 X55,7,56,6 X39,23,40,22 X56,24,57,23 X7,25,8,24 X57,41,58,40 X8,42,9,41 X25,43,26,42 X9,59,10,58 X26,60,27,59 X43,61,44,60 X27,11,28,10 X44,12,45,11 X61,13,62,12 X45,29,46,28 X62,30,63,29 X13,31,14,30 X63,47,64,46 X14,48,15,47 X31,49,32,48 X15,65,16,64 X32,66,33,65 X49,1,50,66 X33,17,34,16 X50,18,51,17 X1,19,2,18 X51,35,52,34 X2,36,3,35 X19,37,20,36 |
Gauss code | -30, -32, -1, 4, 5, 6, -9, -11, -13, 16, 17, 18, -21, -23, -25, 28, 29, 30, -33, -2, -4, 7, 8, 9, -12, -14, -16, 19, 20, 21, -24, -26, -28, 31, 32, 33, -3, -5, -7, 10, 11, 12, -15, -17, -19, 22, 23, 24, -27, -29, -31, 1, 2, 3, -6, -8, -10, 13, 14, 15, -18, -20, -22, 25, 26, 27 |
Dowker-Thistlethwaite code | 18 52 -38 24 58 -44 30 64 -50 36 4 -56 42 10 -62 48 16 -2 54 22 -8 60 28 -14 66 34 -20 6 40 -26 12 46 -32 |
Conway Notation | Data:T(11,4)/Conway Notation |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(11,4)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 11, 22 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Data:T(11,4)/HOMFLYPT Polynomial |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:T(11,4)/Kauffman Polynomial |
Vassiliev invariants
V2 and V3: | (75, 550) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 22 is the signature of T(11,4). Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[11, 4]] |
Out[2]= | 33 |
In[3]:= | PD[TorusKnot[11, 4]] |
Out[3]= | PD[X[3, 53, 4, 52], X[20, 54, 21, 53], X[37, 55, 38, 54],X[21, 5, 22, 4], X[38, 6, 39, 5], X[55, 7, 56, 6], X[39, 23, 40, 22], X[56, 24, 57, 23], X[7, 25, 8, 24], X[57, 41, 58, 40], X[8, 42, 9, 41], X[25, 43, 26, 42], X[9, 59, 10, 58], X[26, 60, 27, 59], X[43, 61, 44, 60], X[27, 11, 28, 10], X[44, 12, 45, 11], X[61, 13, 62, 12], X[45, 29, 46, 28], X[62, 30, 63, 29], X[13, 31, 14, 30], X[63, 47, 64, 46], X[14, 48, 15, 47], X[31, 49, 32, 48], X[15, 65, 16, 64], X[32, 66, 33, 65], X[49, 1, 50, 66], X[33, 17, 34, 16], X[50, 18, 51, 17], X[1, 19, 2, 18], X[51, 35, 52, 34],X[2, 36, 3, 35], X[19, 37, 20, 36]] |
In[4]:= | GaussCode[TorusKnot[11, 4]] |
Out[4]= | GaussCode[-30, -32, -1, 4, 5, 6, -9, -11, -13, 16, 17, 18, -21, -23,-25, 28, 29, 30, -33, -2, -4, 7, 8, 9, -12, -14, -16, 19, 20, 21, -24, -26, -28, 31, 32, 33, -3, -5, -7, 10, 11, 12, -15, -17, -19, 22, 23, 24, -27, -29, -31, 1, 2, 3, -6, -8, -10, 13, 14, 15, -18, -20,-22, 25, 26, 27] |
In[5]:= | BR[TorusKnot[11, 4]] |
Out[5]= | BR[4, {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}] |
In[6]:= | alex = Alexander[TorusKnot[11, 4]][t] |
Out[6]= | -15 -14 -11 -10 |
In[7]:= | Conway[TorusKnot[11, 4]][z] |
Out[7]= | 2 4 6 8 10 12 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[11, 4]], KnotSignature[TorusKnot[11, 4]]} |
Out[9]= | {11, 22} |
In[10]:= | J=Jones[TorusKnot[11, 4]][q] |
Out[10]= | 15 17 19 20 21 22 23 24 25 26 28 q + q + q - q + q - q + q - q + q - q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[11, 4]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[11, 4]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[11, 4]], Vassiliev[3][TorusKnot[11, 4]]} |
Out[14]= | {0, 550} |
In[15]:= | Kh[TorusKnot[11, 4]][q, t] |
Out[15]= | 29 31 2 33 4 35 3 37 |