L6a3

From Knot Atlas
Revision as of 20:14, 28 August 2005 by ScottTestRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L6a2.gif

L6a2

L6a4.gif

L6a4

L6a3.gif Visit L6a3's page at Knotilus!

Visit L6a3's page at the original Knot Atlas!

The link L6a3 is in the Rolfsen table of links. It is often seen in "Magen David" (star of David) necklaces.



Ruberman, Cochran, Melvin, Akbulut, Gompf, Kirby [1]
Rich Schwartz' "72" [2]
Triangle interlaced with a circle, a traditional symbol of the Christian Trinity (less used in recent centuries)
An architectural trefoil (the outline of three overlapping circles) interlaced with an equilateral triangle, another old Christian Trinitarian symbol.
Closed granny knot.


Knot presentations

Planar diagram presentation X8192 X2,9,3,10 X10,3,11,4 X12,5,7,6 X6718 X4,11,5,12
Gauss code {1, -2, 3, -6, 4, -5}, {5, -1, 2, -3, 6, -4}

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -5 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Vassiliev invariants

V2 and V3: (0, )
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:L6a3/V 2,1 Data:L6a3/V 3,1 Data:L6a3/V 4,1 Data:L6a3/V 4,2 Data:L6a3/V 4,3 Data:L6a3/V 5,1 Data:L6a3/V 5,2 Data:L6a3/V 5,3 Data:L6a3/V 5,4 Data:L6a3/V 6,1 Data:L6a3/V 6,2 Data:L6a3/V 6,3 Data:L6a3/V 6,4 Data:L6a3/V 6,5 Data:L6a3/V 6,6 Data:L6a3/V 6,7 Data:L6a3/V 6,8 Data:L6a3/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -5 is the signature of L6a3. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-10χ
-4      11
-6      11
-8    1  1
-10       0
-12  11   0
-14       0
-1611     0
-181      1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Link[6, Alternating, 3]]
Out[2]=  
6
In[3]:=
PD[Link[6, Alternating, 3]]
Out[3]=  
PD[X[8, 1, 9, 2], X[2, 9, 3, 10], X[10, 3, 11, 4], X[12, 5, 7, 6], 
  X[6, 7, 1, 8], X[4, 11, 5, 12]]
In[4]:=
GaussCode[Link[6, Alternating, 3]]
Out[4]=  
GaussCode[{1, -2, 3, -6, 4, -5}, {5, -1, 2, -3, 6, -4}]
In[5]:=
BR[Link[6, Alternating, 3]]
Out[5]=  
BR[Link[6, Alternating, 3]]
In[6]:=
alex = Alexander[Link[6, Alternating, 3]][t]
Out[6]=  
ComplexInfinity
In[7]:=
Conway[Link[6, Alternating, 3]][z]
Out[7]=  
ComplexInfinity
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{}
In[9]:=
{KnotDet[Link[6, Alternating, 3]], KnotSignature[Link[6, Alternating, 3]]}
Out[9]=  
{Infinity, -5}
In[10]:=
J=Jones[Link[6, Alternating, 3]][q]
Out[10]=  
  -(17/2)    -(15/2)    -(13/2)    -(11/2)    -(9/2)    -(5/2)
-q        + q        - q        + q        - q       - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{}
In[12]:=
A2Invariant[Link[6, Alternating, 3]][q]
Out[12]=  
 -26    -24    -22    -16    -14    2     -10    -8

q + q + q + q + q + --- + q + q

                                   12
q
In[13]:=
Kauffman[Link[6, Alternating, 3]][a, z]
Out[13]=  
       5    7
 6   a    a       5        7      9      11        6  2      8  2

-a + -- + -- - 6 a z - 4 a z + a z - a z + 3 a z + 2 a z -

     z    z

  10  2      5  3      7  3    9  3    6  4    8  4    5  5    7  5
a z + 5 a z + 4 a z - a z - a z - a z - a z - a z
In[14]:=
{Vassiliev[2][Link[6, Alternating, 3]], Vassiliev[3][Link[6, Alternating, 3]]}
Out[14]=  
      177

{0, -(---)}

16
In[15]:=
Kh[Link[6, Alternating, 3]][q, t]
Out[15]=  
 -6    -4     1        1        1        1        1        1

q + q + ------ + ------ + ------ + ------ + ------ + -----

            18  6    16  6    16  5    12  4    12  3    8  2
q t q t q t q t q t q t