L6a3
From Knot Atlas
Jump to navigationJump to search
|
|
Visit L6a3's page at Knotilus!
Visit L6a3's page at the original Knot Atlas! | |
The link L6a3 is in the Rolfsen table of links. It is often seen in "Magen David" (star of David) necklaces. |
Knot presentations
Planar diagram presentation | X8192 X2,9,3,10 X10,3,11,4 X12,5,7,6 X6718 X4,11,5,12 |
Gauss code | {1, -2, 3, -6, 4, -5}, {5, -1, 2, -3, 6, -4} |
Polynomial invariants
Multivariable Alexander Polynomial (in , , , ...) | (db) |
Jones polynomial | (db) |
Signature | -5 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | (db) |
Vassiliev invariants
V2 and V3: | (0, ) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -5 is the signature of L6a3. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Link[6, Alternating, 3]] |
Out[2]= | 6 |
In[3]:= | PD[Link[6, Alternating, 3]] |
Out[3]= | PD[X[8, 1, 9, 2], X[2, 9, 3, 10], X[10, 3, 11, 4], X[12, 5, 7, 6], X[6, 7, 1, 8], X[4, 11, 5, 12]] |
In[4]:= | GaussCode[Link[6, Alternating, 3]] |
Out[4]= | GaussCode[{1, -2, 3, -6, 4, -5}, {5, -1, 2, -3, 6, -4}] |
In[5]:= | BR[Link[6, Alternating, 3]] |
Out[5]= | BR[Link[6, Alternating, 3]] |
In[6]:= | alex = Alexander[Link[6, Alternating, 3]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[6, Alternating, 3]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[6, Alternating, 3]], KnotSignature[Link[6, Alternating, 3]]} |
Out[9]= | {Infinity, -5} |
In[10]:= | J=Jones[Link[6, Alternating, 3]][q] |
Out[10]= | -(17/2) -(15/2) -(13/2) -(11/2) -(9/2) -(5/2) -q + q - q + q - q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[6, Alternating, 3]][q] |
Out[12]= | -26 -24 -22 -16 -14 2 -10 -8 |
In[13]:= | Kauffman[Link[6, Alternating, 3]][a, z] |
Out[13]= | 5 76 a a 5 7 9 11 6 2 8 2 |
In[14]:= | {Vassiliev[2][Link[6, Alternating, 3]], Vassiliev[3][Link[6, Alternating, 3]]} |
Out[14]= | 177 |
In[15]:= | Kh[Link[6, Alternating, 3]][q, t] |
Out[15]= | -6 -4 1 1 1 1 1 1 |