In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[8, NonAlternating, 4]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, NonAlternating, 4]] |
Out[3]= | PD[X[6, 1, 7, 2], X[5, 12, 6, 13], X[3, 8, 4, 9], X[2, 14, 3, 13],
X[14, 7, 15, 8], X[9, 16, 10, 11], X[11, 10, 12, 5], X[15, 1, 16, 4]] |
In[4]:= | GaussCode[Link[8, NonAlternating, 4]] |
Out[4]= | GaussCode[{1, -4, -3, 8}, {-2, -1, 5, 3, -6, 7}, {-7, 2, 4, -5, -8, 6}] |
In[5]:= | BR[Link[8, NonAlternating, 4]] |
Out[5]= | BR[Link[8, NonAlternating, 4]] |
In[6]:= | alex = Alexander[Link[8, NonAlternating, 4]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[8, NonAlternating, 4]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, NonAlternating, 4]], KnotSignature[Link[8, NonAlternating, 4]]} |
Out[9]= | {Infinity, -2} |
In[10]:= | J=Jones[Link[8, NonAlternating, 4]][q] |
Out[10]= | -7 -6 2 2 3 -2 2
q - q + -- - -- + -- - q + -
5 4 3 q
q q q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, NonAlternating, 4]][q] |
Out[12]= | -22 -20 2 3 2 3 3 4 4 2 2
q + q + --- + --- + --- + --- + --- + -- + -- + -- + --
18 16 14 12 10 8 6 4 2
q q q q q q q q q |
In[13]:= | Kauffman[Link[8, NonAlternating, 4]][a, z] |
Out[13]= | 2 4 6 3 5
2 4 6 8 a 2 a a 2 a 2 a 3
-5 a - 8 a - 3 a + a + -- + ---- + -- - ---- - ---- + 6 a z +
2 2 2 z z
z z z
5 2 2 4 2 6 2 8 2 3 3 5 3
6 a z + 3 a z + 10 a z + 4 a z - 3 a z - 3 a z - 5 a z -
7 3 4 4 6 4 8 4 3 5 5 5 7 5
2 a z - 4 a z - 3 a z + a z + a z + 2 a z + a z +
4 6 6 6
a z + a z |
In[14]:= | {Vassiliev[2][Link[8, NonAlternating, 4]], Vassiliev[3][Link[8, NonAlternating, 4]]} |
Out[14]= | 26
{0, --}
3 |
In[15]:= | Kh[Link[8, NonAlternating, 4]][q, t] |
Out[15]= | 2 2 1 1 1 1 1 1 1
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- +
3 q 15 6 13 6 13 5 11 4 9 4 9 3 7 3
q q t q t q t q t q t q t q t
2 2 1
----- + ----- + ----
7 2 5 2 3
q t q t q t |