In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 35]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 35]] |
Out[3]= | PD[X[10, 1, 11, 2], X[12, 3, 13, 4], X[16, 8, 17, 7], X[14, 6, 15, 5],
X[18, 13, 9, 14], X[6, 16, 7, 15], X[4, 18, 5, 17], X[2, 9, 3, 10],
X[8, 11, 1, 12]] |
In[4]:= | GaussCode[Link[9, Alternating, 35]] |
Out[4]= | GaussCode[{1, -8, 2, -7, 4, -6, 3, -9},
{8, -1, 9, -2, 5, -4, 6, -3, 7, -5}] |
In[5]:= | BR[Link[9, Alternating, 35]] |
Out[5]= | BR[Link[9, Alternating, 35]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 35]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 35]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 35]], KnotSignature[Link[9, Alternating, 35]]} |
Out[9]= | {Infinity, 1} |
In[10]:= | J=Jones[Link[9, Alternating, 35]][q] |
Out[10]= | -(9/2) 2 3 6 6 3/2 5/2
q - ---- + ---- - ---- + ------- - 7 Sqrt[q] + 6 q - 5 q +
7/2 5/2 3/2 Sqrt[q]
q q q
7/2 9/2
3 q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 35]][q] |
Out[12]= | -14 3 -4 2 4 6 8 12 14
2 - q + -- + q + -- + 2 q - q + q - q + q
6 2
q q |
In[13]:= | Kauffman[Link[9, Alternating, 35]][a, z] |
Out[13]= | 2 2
1 a 2 z 3 2 z 2 z 2 2
1 - --- - - - --- + 6 a z + 4 a z - 5 z + -- - ---- - 6 a z -
a z z 3 4 2
a a a
3 3 3 4
4 2 z 5 z 4 z 3 3 3 4 3 z
4 a z - -- + ---- + ---- - 12 a z - 10 a z + 12 z - ---- +
5 3 a 4
a a a
4 5 5
6 z 2 4 4 4 5 z z 5 3 5 6
---- + 7 a z + 4 a z - ---- + -- + 14 a z + 8 a z - 4 z -
2 3 a
a a
6 7
5 z 4 6 3 z 7 3 7 8 2 8
---- - a z - ---- - 5 a z - 2 a z - z - a z
2 a
a |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 35]], Vassiliev[3][Link[9, Alternating, 35]]} |
Out[14]= | 3
{0, -}
2 |
In[15]:= | Kh[Link[9, Alternating, 35]][q, t] |
Out[15]= | 2 1 1 1 2 1 4 2 4
5 + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + - +
10 5 8 4 6 4 6 3 4 3 4 2 2 2 t
q t q t q t q t q t q t q t
2 2 4 4 2 6 2 6 3 8 3 10 4
---- + 3 q t + 3 q t + 2 q t + 3 q t + q t + 2 q t + q t
2
q t |