In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 41]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 41]] |
Out[3]= | PD[X[10, 1, 11, 2], X[2, 11, 3, 12], X[12, 3, 13, 4], X[18, 5, 9, 6],
X[14, 8, 15, 7], X[16, 14, 17, 13], X[8, 16, 1, 15], X[6, 9, 7, 10],
X[4, 17, 5, 18]] |
In[4]:= | GaussCode[Link[9, Alternating, 41]] |
Out[4]= | GaussCode[{1, -2, 3, -9, 4, -8, 5, -7},
{8, -1, 2, -3, 6, -5, 7, -6, 9, -4}] |
In[5]:= | BR[Link[9, Alternating, 41]] |
Out[5]= | BR[Link[9, Alternating, 41]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 41]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 41]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 41]], KnotSignature[Link[9, Alternating, 41]]} |
Out[9]= | {Infinity, -3} |
In[10]:= | J=Jones[Link[9, Alternating, 41]][q] |
Out[10]= | -(15/2) 2 4 6 6 5 6 3
-q + ----- - ----- + ---- - ---- + ---- - ---- + ------- -
13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q q
3/2
2 Sqrt[q] + q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 41]][q] |
Out[12]= | -22 2 -14 -10 4 2 3 -2 4
-1 + q + --- - q - q + -- + -- + -- + q - q
18 8 6 4
q q q q |
In[13]:= | Kauffman[Link[9, Alternating, 41]][a, z] |
Out[13]= | 3 5
4 a a 3 5 7 9 2
a - -- - -- + 5 a z + 11 a z + 4 a z - a z + a z - 4 z -
z z
2 2 4 2 6 2 8 2 3 3 3 5 3
7 a z - 10 a z - 6 a z + a z - 10 a z - 17 a z - 4 a z +
7 3 9 3 4 2 4 4 4 6 4 8 4
2 a z - a z + 4 z + 8 a z + 13 a z + 7 a z - 2 a z +
5 3 5 5 5 7 5 6 4 6 6 6
8 a z + 16 a z + 5 a z - 3 a z - z - 3 a z - 4 a z -
7 3 7 5 7 2 8 4 8
2 a z - 5 a z - 3 a z - a z - a z |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 41]], Vassiliev[3][Link[9, Alternating, 41]]} |
Out[14]= | 125
{0, -(---)}
24 |
In[15]:= | Kh[Link[9, Alternating, 41]][q, t] |
Out[15]= | 3 4 1 1 1 3 2 4 2
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- +
4 2 16 6 14 5 12 5 12 4 10 4 10 3 8 3
q q q t q t q t q t q t q t q t
2 4 3 2 t 2 2 2 4 3
----- + ----- + ---- + ---- + 2 t + -- + t + q t + q t
8 2 6 2 6 4 2
q t q t q t q t q |