L9a42
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a42 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^2_{41}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a42's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X12,4,13,3 X18,5,9,6 X6,9,7,10 X16,12,17,11 X14,8,15,7 X4,14,5,13 X8,16,1,15 X2,17,3,18 |
| Gauss code | {1, -9, 2, -7, 3, -4, 6, -8}, {4, -1, 5, -2, 7, -6, 8, -5, 9, -3} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{(u-1) (v-1) \left(u^2 v^2-u v^2+3 u v-u+1\right)}{u^{3/2} v^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 q^{9/2}+6 q^{7/2}-\frac{1}{q^{7/2}}-9 q^{5/2}+\frac{3}{q^{5/2}}+9 q^{3/2}-\frac{6}{q^{3/2}}+q^{11/2}-10 \sqrt{q}+\frac{8}{\sqrt{q}}} (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^7 a^{-1} +a z^5-5 z^5 a^{-1} +z^5 a^{-3} +3 a z^3-9 z^3 a^{-1} +3 z^3 a^{-3} +3 a z-6 z a^{-1} +3 z a^{-3} +a z^{-1} - a^{-1} z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-6} -z^2 a^{-6} +3 z^5 a^{-5} -3 z^3 a^{-5} +z a^{-5} +5 z^6 a^{-4} -6 z^4 a^{-4} +3 z^2 a^{-4} +5 z^7 a^{-3} +a^3 z^5-6 z^5 a^{-3} -2 a^3 z^3+4 z^3 a^{-3} +a^3 z-2 z a^{-3} +2 z^8 a^{-2} +3 a^2 z^6+5 z^6 a^{-2} -6 a^2 z^4-12 z^4 a^{-2} +3 a^2 z^2+6 z^2 a^{-2} +4 a z^7+9 z^7 a^{-1} -7 a z^5-17 z^5 a^{-1} +3 a z^3+12 z^3 a^{-1} -2 a z-6 z a^{-1} +a z^{-1} + a^{-1} z^{-1} +2 z^8+3 z^6-11 z^4+5 z^2-1} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



