L9a43
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a43 is in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a43's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X14,7,15,8 X8,13,5,14 X16,11,17,12 X18,15,9,16 X12,17,13,18 X2536 X4,9,1,10 |
| Gauss code | {1, -8, 2, -9}, {8, -1, 3, -4}, {9, -2, 5, -7, 4, -3, 6, -5, 7, -6} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{t(1) t(3)^3+t(2) t(3)^3-t(3)^3-3 t(1) t(3)^2+2 t(1) t(2) t(3)^2-3 t(2) t(3)^2+2 t(3)^2+3 t(1) t(3)-2 t(1) t(2) t(3)+3 t(2) t(3)-2 t(3)-t(1)+t(1) t(2)-t(2)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - q^{-11} +2 q^{-10} -5 q^{-9} +8 q^{-8} -8 q^{-7} +10 q^{-6} -7 q^{-5} +7 q^{-4} -3 q^{-3} + q^{-2} } (db) |
| Signature | -4 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^{12} z^{-2} +4 a^{10} z^{-2} +4 a^{10}-6 a^8 z^2-5 a^8 z^{-2} -11 a^8+3 a^6 z^4+8 a^6 z^2+2 a^6 z^{-2} +7 a^6+a^4 z^4+a^4 z^2} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^{13} z^5-3 a^{13} z^3+3 a^{13} z-a^{13} z^{-1} +2 a^{12} z^6-4 a^{12} z^4+3 a^{12} z^2+a^{12} z^{-2} -2 a^{12}+2 a^{11} z^7+a^{11} z^5-11 a^{11} z^3+13 a^{11} z-5 a^{11} z^{-1} +a^{10} z^8+6 a^{10} z^6-16 a^{10} z^4+14 a^{10} z^2+4 a^{10} z^{-2} -10 a^{10}+6 a^9 z^7-3 a^9 z^5-16 a^9 z^3+21 a^9 z-9 a^9 z^{-1} +a^8 z^8+10 a^8 z^6-24 a^8 z^4+23 a^8 z^2+5 a^8 z^{-2} -14 a^8+4 a^7 z^7-10 a^7 z^3+11 a^7 z-5 a^7 z^{-1} +6 a^6 z^6-11 a^6 z^4+11 a^6 z^2+2 a^6 z^{-2} -7 a^6+3 a^5 z^5-2 a^5 z^3+a^4 z^4-a^4 z^2} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



