L9a44
From Knot Atlas
Jump to navigationJump to search
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
L9a44 is in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a44's Link Presentations]
Planar diagram presentation | X6172 X10,3,11,4 X18,14,9,13 X16,12,17,11 X12,18,13,17 X8,16,5,15 X14,8,15,7 X2536 X4,9,1,10 |
Gauss code | {1, -8, 2, -9}, {8, -1, 7, -6}, {9, -2, 4, -5, 3, -7, 6, -4, 5, -3} |
A Braid Representative |
| ||||
A Morse Link Presentation | ![]() |
Polynomial invariants
Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-t(1) t(3)^3+t(1) t(2) t(3)^3-2 t(2) t(3)^3+t(3)^3+2 t(1) t(3)^2-t(1) t(2) t(3)^2+2 t(2) t(3)^2-t(3)^2-2 t(1) t(3)+t(1) t(2) t(3)-2 t(2) t(3)+t(3)+2 t(1)-t(1) t(2)+t(2)-1}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}}} (db) |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^6+3 q^5-6 q^4+7 q^3-7 q^2+8 q-5+5 q^{-1} - q^{-2} + q^{-3} } (db) |
Signature | 2 (db) |
HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{-2} +4 z^4 a^{-2} -z^4 a^{-4} -2 z^4+a^2 z^2+7 z^2 a^{-2} -2 z^2 a^{-4} -7 z^2+3 a^2+8 a^{-2} -2 a^{-4} -9+2 a^2 z^{-2} +4 a^{-2} z^{-2} - a^{-4} z^{-2} -5 z^{-2} } (db) |
Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^3 a^{-7} +3 z^4 a^{-6} +6 z^5 a^{-5} -6 z^3 a^{-5} +3 z a^{-5} - a^{-5} z^{-1} +7 z^6 a^{-4} -11 z^4 a^{-4} +6 z^2 a^{-4} + a^{-4} z^{-2} -2 a^{-4} +4 z^7 a^{-3} -z^5 a^{-3} -12 z^3 a^{-3} +13 z a^{-3} -5 a^{-3} z^{-1} +z^8 a^{-2} +a^2 z^6+7 z^6 a^{-2} -5 a^2 z^4-21 z^4 a^{-2} +9 a^2 z^2+16 z^2 a^{-2} +2 a^2 z^{-2} +4 a^{-2} z^{-2} -7 a^2-10 a^{-2} +a z^7+5 z^7 a^{-1} -a z^5-8 z^5 a^{-1} -6 a z^3-11 z^3 a^{-1} +11 a z+21 z a^{-1} -5 a z^{-1} -9 a^{-1} z^{-1} +z^8+z^6-12 z^4+19 z^2+5 z^{-2} -14} (db) |
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|