In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[8, Alternating, 12]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, Alternating, 12]] |
Out[3]= | PD[X[10, 1, 11, 2], X[16, 7, 9, 8], X[12, 3, 13, 4], X[14, 5, 15, 6],
X[4, 13, 5, 14], X[6, 15, 7, 16], X[2, 9, 3, 10], X[8, 11, 1, 12]] |
In[4]:= | GaussCode[Link[8, Alternating, 12]] |
Out[4]= | GaussCode[{1, -7, 3, -5, 4, -6, 2, -8}, {7, -1, 8, -3, 5, -4, 6, -2}] |
In[5]:= | BR[Link[8, Alternating, 12]] |
Out[5]= | BR[Link[8, Alternating, 12]] |
In[6]:= | alex = Alexander[Link[8, Alternating, 12]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[8, Alternating, 12]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, Alternating, 12]], KnotSignature[Link[8, Alternating, 12]]} |
Out[9]= | {Infinity, -5} |
In[10]:= | J=Jones[Link[8, Alternating, 12]][q] |
Out[10]= | -(21/2) -(19/2) 2 3 3 2 2 -(7/2)
-q + q - ----- + ----- - ----- + ----- - ---- + q -
17/2 15/2 13/2 11/2 9/2
q q q q q
-(5/2)
q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, Alternating, 12]][q] |
Out[12]= | -32 -30 -28 -26 -22 -18 -16 -12 -8
q + q + q + q + q + q + q + q + q |
In[13]:= | Kauffman[Link[8, Alternating, 12]][a, z] |
Out[13]= | 7 9
8 a a 5 7 9 11 13 6 2
a - -- - -- - 3 a z + 5 a z + 5 a z - a z + 2 a z - a z -
z z
8 2 10 2 12 2 5 3 7 3 9 3 11 3
5 a z - 3 a z + a z + 4 a z - 6 a z - 8 a z + a z -
13 3 6 4 8 4 10 4 12 4 5 5 7 5
a z + 3 a z + 6 a z + 2 a z - a z - a z + 4 a z +
9 5 11 5 6 6 8 6 10 6 7 7 9 7
4 a z - a z - a z - 2 a z - a z - a z - a z |
In[14]:= | {Vassiliev[2][Link[8, Alternating, 12]], Vassiliev[3][Link[8, Alternating, 12]]} |
Out[14]= | 299
{0, -(---)}
12 |
In[15]:= | Kh[Link[8, Alternating, 12]][q, t] |
Out[15]= | -6 -4 1 1 1 1 1 2
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
22 8 20 8 20 7 18 6 16 6 16 5
q t q t q t q t q t q t
1 1 2 1 1 1 1 1
------ + ------ + ------ + ------ + ------ + ------ + ----- + ----
14 5 14 4 12 4 12 3 10 3 10 2 8 2 6
q t q t q t q t q t q t q t q t |