In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 15]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 15]] |
Out[3]= | PD[X[6, 1, 7, 2], X[12, 4, 13, 3], X[14, 8, 15, 7], X[18, 12, 5, 11],
X[8, 18, 9, 17], X[16, 10, 17, 9], X[10, 16, 11, 15], X[2, 5, 3, 6],
X[4, 14, 1, 13]] |
In[4]:= | GaussCode[Link[9, Alternating, 15]] |
Out[4]= | GaussCode[{1, -8, 2, -9}, {8, -1, 3, -5, 6, -7, 4, -2, 9, -3, 7, -6, 5,
-4}] |
In[5]:= | BR[Link[9, Alternating, 15]] |
Out[5]= | BR[Link[9, Alternating, 15]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 15]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 15]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 15]], KnotSignature[Link[9, Alternating, 15]]} |
Out[9]= | {Infinity, 3} |
In[10]:= | J=Jones[Link[9, Alternating, 15]][q] |
Out[10]= | 1 3/2 5/2 7/2 9/2 11/2
-(-------) + 2 Sqrt[q] - 5 q + 5 q - 7 q + 7 q - 6 q +
Sqrt[q]
13/2 15/2 17/2
4 q - 2 q + q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 15]][q] |
Out[12]= | -2 2 4 6 8 10 12 14 16 18 20
q + q + 3 q + q + 4 q + q + q + q - q + q - 2 q -
22 26
q - q |
In[13]:= | Kauffman[Link[9, Alternating, 15]][a, z] |
Out[13]= | 2
2 5 3 -2 1 2 1 4 z 7 z 3 z 2 z
-- + -- + -- - a - ---- - ---- + --- + --- + --- - --- + ---- -
8 6 4 7 5 a z 7 5 a 10
a a a a z a z a a a
2 2 2 3 3 3 3 3 4
6 z 15 z 7 z 3 z 10 z 13 z 3 z 3 z z
---- - ----- - ---- + ---- - ----- - ----- + ---- + ---- - --- +
8 6 4 9 7 5 3 a 10
a a a a a a a a
4 4 4 4 5 5 5 5 5 6
6 z 11 z 8 z 4 z 2 z 7 z 12 z 2 z z 3 z
---- + ----- + ---- + ---- - ---- + ---- + ----- + ---- - -- - ---- -
8 6 4 2 9 7 5 3 a 8
a a a a a a a a a
6 6 6 7 7 7 8 8
3 z 2 z 2 z 3 z 5 z 2 z z z
---- - ---- - ---- - ---- - ---- - ---- - -- - --
6 4 2 7 5 3 6 4
a a a a a a a a |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 15]], Vassiliev[3][Link[9, Alternating, 15]]} |
Out[14]= | 15
{0, -(--)}
2 |
In[15]:= | Kh[Link[9, Alternating, 15]][q, t] |
Out[15]= | 2
2 4 1 1 q 4 6 6 2 8 2
4 q + 3 q + ----- + - + -- + 3 q t + 2 q t + 4 q t + 3 q t +
2 2 t t
q t
8 3 10 3 10 4 12 4 12 5 14 5
3 q t + 4 q t + 3 q t + 3 q t + q t + 3 q t +
14 6 16 6 18 7
q t + q t + q t |