In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[8, Alternating, 15]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, Alternating, 15]] |
Out[3]= | PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[14, 7, 15, 8], X[8, 13, 5, 14],
X[16, 12, 9, 11], X[12, 16, 13, 15], X[2, 5, 3, 6], X[4, 9, 1, 10]] |
In[4]:= | GaussCode[Link[8, Alternating, 15]] |
Out[4]= | GaussCode[{1, -7, 2, -8}, {7, -1, 3, -4}, {8, -2, 5, -6, 4, -3, 6, -5}] |
In[5]:= | BR[Link[8, Alternating, 15]] |
Out[5]= | BR[Link[8, Alternating, 15]] |
In[6]:= | alex = Alexander[Link[8, Alternating, 15]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[8, Alternating, 15]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, Alternating, 15]], KnotSignature[Link[8, Alternating, 15]]} |
Out[9]= | {Infinity, -2} |
In[10]:= | J=Jones[Link[8, Alternating, 15]][q] |
Out[10]= | -7 -6 4 4 6 4 4
-3 + q - q + -- - -- + -- - -- + - + q
5 4 3 2 q
q q q q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, Alternating, 15]][q] |
Out[12]= | -24 3 3 4 6 3 3 2 -8 2 -4
-1 + q + --- + --- + --- + --- + --- + --- + --- + q + -- - q +
22 20 18 16 14 12 10 6
q q q q q q q q
-2 2 4
q - q + q |
In[13]:= | Kauffman[Link[8, Alternating, 15]][a, z] |
Out[13]= | 4 6 8 5 7
4 6 8 a 2 a a 2 a 2 a 5 7
3 a + 5 a + 3 a - -- - ---- - -- + ---- + ---- - 3 a z - 3 a z -
2 2 2 z z
z z z
2 2 2 6 2 8 2 3 3 3 5 3 4
z + 2 a z - 6 a z - 3 a z - 5 a z - 3 a z + 2 a z + z -
2 4 4 4 6 4 8 4 5 3 5 7 5
5 a z - 5 a z + 2 a z + a z + 3 a z + 2 a z + a z +
2 6 4 6 6 6 3 7 5 7
3 a z + 4 a z + a z + a z + a z |
In[14]:= | {Vassiliev[2][Link[8, Alternating, 15]], Vassiliev[3][Link[8, Alternating, 15]]} |
Out[14]= | 27
{0, --}
2 |
In[15]:= | Kh[Link[8, Alternating, 15]][q, t] |
Out[15]= | 3 2 1 1 4 3 3 1 3
-- + - + ------ + ------ + ------ + ----- + ----- + ----- + ----- +
3 q 15 6 11 5 11 4 9 4 9 3 7 3 7 2
q q t q t q t q t q t q t q t
3 1 3 t 3 2
----- + ---- + ---- + - + 2 q t + q t
5 2 5 3 q
q t q t q t |