L9a27
|
|
|
|
Visit L9a27's page at Knotilus!
Visit L9a27's page at the original Knot Atlas! |
| L9a27 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^2_{12}} in the Rolfsen table of links. |
Knot presentations
| Planar diagram presentation | X8192 X10,4,11,3 X18,10,7,9 X2738 X16,13,17,14 X6,12,1,11 X4,16,5,15 X14,6,15,5 X12,17,13,18 |
| Gauss code | {1, -4, 2, -7, 8, -6}, {4, -1, 3, -2, 6, -9, 5, -8, 7, -5, 9, -3} |
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(u v-u-2 v+1) (u v-2 u-v+1)}{u v}} (db) |
| Jones polynomial | (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | (db) |
| Kauffman polynomial | (db) |
Vassiliev invariants
| V2 and V3: | (0, ) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 1 is the signature of L9a27. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Link[9, Alternating, 27]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 27]] |
Out[3]= | PD[X[8, 1, 9, 2], X[10, 4, 11, 3], X[18, 10, 7, 9], X[2, 7, 3, 8],X[16, 13, 17, 14], X[6, 12, 1, 11], X[4, 16, 5, 15], X[14, 6, 15, 5],X[12, 17, 13, 18]] |
In[4]:= | GaussCode[Link[9, Alternating, 27]] |
Out[4]= | GaussCode[{1, -4, 2, -7, 8, -6},
{4, -1, 3, -2, 6, -9, 5, -8, 7, -5, 9, -3}] |
In[5]:= | BR[Link[9, Alternating, 27]] |
Out[5]= | BR[Link[9, Alternating, 27]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 27]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 27]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 27]], KnotSignature[Link[9, Alternating, 27]]} |
Out[9]= | {Infinity, 1} |
In[10]:= | J=Jones[Link[9, Alternating, 27]][q] |
Out[10]= | -(7/2) 3 5 7 3/2 5/2 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 27]][q] |
Out[12]= | -12 2 -6 -4 4 8 10 12 14 18 |
In[13]:= | Kauffman[Link[9, Alternating, 27]][a, z] |
Out[13]= | 2 2-2 1 1 2 z 4 z 2 z 3 2 z z |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 27]], Vassiliev[3][Link[9, Alternating, 27]]} |
Out[14]= | 31 |
In[15]:= | Kh[Link[9, Alternating, 27]][q, t] |
Out[15]= | 2 1 2 1 3 2 3 4 2 |


