L9a26
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a26 is [math]\displaystyle{ 9^2_{11} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a26's Link Presentations]
| Planar diagram presentation | X8192 X10,4,11,3 X18,10,7,9 X14,6,15,5 X16,14,17,13 X12,18,13,17 X2738 X4,12,5,11 X6,16,1,15 |
| Gauss code | {1, -7, 2, -8, 4, -9}, {7, -1, 3, -2, 8, -6, 5, -4, 9, -5, 6, -3} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 u^2 v^2-3 u^2 v+u^2-3 u v^2+5 u v-3 u+v^2-3 v+2}{u v} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 8 q^{9/2}-8 q^{7/2}+6 q^{5/2}-5 q^{3/2}+q^{17/2}-3 q^{15/2}+5 q^{13/2}-7 q^{11/2}+2 \sqrt{q}-\frac{1}{\sqrt{q}} }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^3 a^{-7} +z a^{-7} -z^5 a^{-5} -2 z^3 a^{-5} -z a^{-5} -z^5 a^{-3} -2 z^3 a^{-3} -z a^{-3} - a^{-3} z^{-1} +z^3 a^{-1} +2 z a^{-1} + a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^4 a^{-10} -z^2 a^{-10} +3 z^5 a^{-9} -4 z^3 a^{-9} +z a^{-9} +4 z^6 a^{-8} -5 z^4 a^{-8} +2 z^2 a^{-8} +3 z^7 a^{-7} -z^5 a^{-7} -2 z^3 a^{-7} +z a^{-7} +z^8 a^{-6} +5 z^6 a^{-6} -9 z^4 a^{-6} +4 z^2 a^{-6} +5 z^7 a^{-5} -6 z^5 a^{-5} +z a^{-5} +z^8 a^{-4} +3 z^6 a^{-4} -7 z^4 a^{-4} +2 z^2 a^{-4} +2 z^7 a^{-3} -z^5 a^{-3} -5 z^3 a^{-3} +4 z a^{-3} - a^{-3} z^{-1} +2 z^6 a^{-2} -4 z^4 a^{-2} +z^2 a^{-2} + a^{-2} +z^5 a^{-1} -3 z^3 a^{-1} +3 z a^{-1} - a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



