L9a25
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a25 is [math]\displaystyle{ 9^2_{8} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a25's Link Presentations]
| Planar diagram presentation | X8192 X10,3,11,4 X14,6,15,5 X18,11,7,12 X16,13,17,14 X12,17,13,18 X4,16,5,15 X2738 X6,9,1,10 |
| Gauss code | {1, -8, 2, -7, 3, -9}, {8, -1, 9, -2, 4, -6, 5, -3, 7, -5, 6, -4} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{2 t(2) t(1)^2-2 t(1)^2+2 t(2)^2 t(1)-5 t(2) t(1)+2 t(1)-2 t(2)^2+2 t(2)}{t(1) t(2)} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{5}{q^{9/2}}+\frac{5}{q^{7/2}}-\frac{6}{q^{5/2}}-q^{3/2}+\frac{5}{q^{3/2}}+\frac{1}{q^{15/2}}-\frac{2}{q^{13/2}}+\frac{3}{q^{11/2}}+2 \sqrt{q}-\frac{4}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z a^7+z^3 a^5+2 z^3 a^3+2 z a^3+a^3 z^{-1} +z^3 a-z a-a z^{-1} -z a^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^6 a^8+4 z^4 a^8-4 z^2 a^8-2 z^7 a^7+8 z^5 a^7-9 z^3 a^7+3 z a^7-z^8 a^6+z^6 a^6+4 z^4 a^6-3 z^2 a^6-4 z^7 a^5+11 z^5 a^5-7 z^3 a^5+2 z a^5-z^8 a^4-z^6 a^4+5 z^4 a^4-z^2 a^4-2 z^7 a^3+6 z^3 a^3-5 z a^3+a^3 z^{-1} -3 z^6 a^2+3 z^4 a^2-z^2 a^2-a^2-3 z^5 a+3 z^3 a-3 z a+a z^{-1} -2 z^4+z^2-z^3 a^{-1} +z a^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



