In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 14]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 14]] |
Out[3]= | PD[X[6, 1, 7, 2], X[12, 4, 13, 3], X[14, 8, 15, 7], X[16, 10, 17, 9],
X[18, 12, 5, 11], X[8, 16, 9, 15], X[10, 18, 11, 17], X[2, 5, 3, 6],
X[4, 14, 1, 13]] |
In[4]:= | GaussCode[Link[9, Alternating, 14]] |
Out[4]= | GaussCode[{1, -8, 2, -9}, {8, -1, 3, -6, 4, -7, 5, -2, 9, -3, 6, -4, 7,
-5}] |
In[5]:= | BR[Link[9, Alternating, 14]] |
Out[5]= | BR[Link[9, Alternating, 14]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 14]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 14]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 14]], KnotSignature[Link[9, Alternating, 14]]} |
Out[9]= | {Infinity, 5} |
In[10]:= | J=Jones[Link[9, Alternating, 14]][q] |
Out[10]= | 3/2 5/2 7/2 9/2 11/2 13/2
-Sqrt[q] + q - 3 q + 2 q - 4 q + 4 q - 3 q +
15/2 17/2 19/2
3 q - 2 q + q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 14]][q] |
Out[12]= | 2 4 6 8 10 12 14 16 18 20
q + q + 2 q + 3 q + 3 q + 4 q + q + q - 2 q - 2 q -
22 24 28
q - q - q |
In[13]:= | Kauffman[Link[9, Alternating, 14]][a, z] |
Out[13]= | 2 2
-10 5 5 2 5 3 7 z 17 z 10 z z 3 z
-a + -- + -- - ---- - ---- - ---- + --- + ---- + ---- - --- + ---- -
6 4 7 5 3 7 5 3 12 10
a a a z a z a z a a a a a
2 2 3 3 3 3 3 4 4
12 z 8 z 2 z 4 z 12 z 30 z 12 z 3 z 6 z
----- - ---- - ---- + ---- - ----- - ----- - ----- - ---- + ---- +
6 4 11 9 7 5 3 10 8
a a a a a a a a a
4 4 5 5 5 5 6 6 6 7
8 z z 3 z 11 z 20 z 6 z 3 z z 4 z 3 z
---- - -- - ---- + ----- + ----- + ---- - ---- + -- + ---- - ---- -
6 4 9 7 5 3 8 6 4 7
a a a a a a a a a a
7 7 8 8
4 z z z z
---- - -- - -- - --
5 3 6 4
a a a a |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 14]], Vassiliev[3][Link[9, Alternating, 14]]} |
Out[14]= | 23
{0, -(--)}
2 |
In[15]:= | Kh[Link[9, Alternating, 14]][q, t] |
Out[15]= | 4
4 6 -2 q 6 8 8 2 10 2 10 3
3 q + 2 q + t + -- + q t + q t + 3 q t + q t + q t +
t
12 3 12 4 14 4 14 5 16 5 16 6 18 6
3 q t + 2 q t + q t + q t + 2 q t + q t + q t +
20 7
q t |