In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[8, Alternating, 8]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, Alternating, 8]] |
Out[3]= | PD[X[8, 1, 9, 2], X[10, 4, 11, 3], X[16, 10, 7, 9], X[2, 7, 3, 8],
X[14, 12, 15, 11], X[12, 5, 13, 6], X[4, 13, 5, 14], X[6, 16, 1, 15]] |
In[4]:= | GaussCode[Link[8, Alternating, 8]] |
Out[4]= | GaussCode[{1, -4, 2, -7, 6, -8}, {4, -1, 3, -2, 5, -6, 7, -5, 8, -3}] |
In[5]:= | BR[Link[8, Alternating, 8]] |
Out[5]= | BR[Link[8, Alternating, 8]] |
In[6]:= | alex = Alexander[Link[8, Alternating, 8]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[8, Alternating, 8]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, Alternating, 8]], KnotSignature[Link[8, Alternating, 8]]} |
Out[9]= | {Infinity, 1} |
In[10]:= | J=Jones[Link[8, Alternating, 8]][q] |
Out[10]= | -(7/2) 2 4 4 3/2 5/2
-q + ---- - ---- + ------- - 6 Sqrt[q] + 5 q - 4 q +
5/2 3/2 Sqrt[q]
q q
7/2 9/2
3 q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, Alternating, 8]][q] |
Out[12]= | -12 -10 2 -4 2 4 6 12 14
3 + q + q + -- + q + -- + q - 2 q - q + q
6 2
q q |
In[13]:= | Kauffman[Link[8, Alternating, 8]][a, z] |
Out[13]= | 3 2 2
2 a a 2 z 6 z 3 2 2 z 2 z
-a + - + -- - --- - --- - 7 a z - 3 a z - 2 z + ---- + ---- -
z z 3 a 4 2
a a a
3 3 3 4 4
2 2 z 4 z 12 z 3 3 3 4 3 z z
2 a z - -- + ---- + ----- + 10 a z + 3 a z + 9 z - ---- + -- +
5 3 a 4 2
a a a a
5 5 6 7
2 4 4 z 5 z 5 3 5 6 3 z 2 6 z
5 a z - ---- - ---- - 2 a z - a z - 5 z - ---- - 2 a z - -- -
3 a 2 a
a a
7
a z |
In[14]:= | {Vassiliev[2][Link[8, Alternating, 8]], Vassiliev[3][Link[8, Alternating, 8]]} |
Out[14]= | 17
{0, -(--)}
48 |
In[15]:= | Kh[Link[8, Alternating, 8]][q, t] |
Out[15]= | 2 1 1 1 3 2 2 2 2
4 + 3 q + ----- + ----- + ----- + ----- + ----- + - + ---- + 2 q t +
8 4 6 3 4 3 4 2 2 2 t 2
q t q t q t q t q t q t
4 4 2 6 2 6 3 8 3 10 4
3 q t + 2 q t + 2 q t + q t + 2 q t + q t |