L8a9
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L8a9 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8^2_{8}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L8a9's Link Presentations]
| Planar diagram presentation | X8192 X10,4,11,3 X16,10,7,9 X2738 X4,16,5,15 X12,5,13,6 X14,11,15,12 X6,13,1,14 |
| Gauss code | {1, -4, 2, -5, 6, -8}, {4, -1, 3, -2, 7, -6, 8, -7, 5, -3} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{t(2)^2 t(1)^2-2 t(2) t(1)^2+t(1)^2-2 t(2)^2 t(1)+5 t(2) t(1)-2 t(1)+t(2)^2-2 t(2)+1}{t(1) t(2)}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{3}{q^{9/2}}+\frac{4}{q^{7/2}}+q^{5/2}-\frac{6}{q^{5/2}}-3 q^{3/2}+\frac{6}{q^{3/2}}+\frac{1}{q^{11/2}}+4 \sqrt{q}-\frac{6}{\sqrt{q}}} (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^5 (-z)+2 a^3 z^3+3 a^3 z+a^3 z^{-1} -a z^5-3 a z^3+z^3 a^{-1} -4 a z-a z^{-1} +z a^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^6 z^4-a^6 z^2+3 a^5 z^5-5 a^5 z^3+2 a^5 z+3 a^4 z^6-3 a^4 z^4+a^3 z^7+6 a^3 z^5-13 a^3 z^3+7 a^3 z-a^3 z^{-1} +6 a^2 z^6-8 a^2 z^4+z^4 a^{-2} +2 a^2 z^2-z^2 a^{-2} +a^2+a z^7+6 a z^5+3 z^5 a^{-1} -13 a z^3-5 z^3 a^{-1} +7 a z+2 z a^{-1} -a z^{-1} +3 z^6-3 z^4} (db) |
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



