L8a10
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L8a10 is [math]\displaystyle{ 8^2_{5} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L8a10's Link Presentations]
| Planar diagram presentation | X8192 X10,3,11,4 X12,15,13,16 X14,5,15,6 X4,13,5,14 X16,11,7,12 X2738 X6,9,1,10 |
| Gauss code | {1, -7, 2, -5, 4, -8}, {7, -1, 8, -2, 6, -3, 5, -4, 3, -6} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 t(2) t(1)^2-t(1)^2+2 t(2)^2 t(1)-3 t(2) t(1)+2 t(1)-t(2)^2+2 t(2)}{t(1) t(2)} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{1}{q^{3/2}}+\frac{2}{q^{5/2}}-\frac{4}{q^{7/2}}+\frac{4}{q^{9/2}}-\frac{5}{q^{11/2}}+\frac{4}{q^{13/2}}-\frac{3}{q^{15/2}}+\frac{2}{q^{17/2}}-\frac{1}{q^{19/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^9 z-a^7 z^3+a^7 z^{-1} -2 a^5 z^3-3 a^5 z-a^5 z^{-1} -a^3 z^3-a^3 z }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^5 a^{11}+3 z^3 a^{11}-2 z a^{11}-2 z^6 a^{10}+6 z^4 a^{10}-4 z^2 a^{10}-z^7 a^9+4 z^3 a^9-z a^9-4 z^6 a^8+8 z^4 a^8-3 z^2 a^8-z^7 a^7-2 z^5 a^7+6 z^3 a^7-4 z a^7+a^7 z^{-1} -2 z^6 a^6+2 z^2 a^6-a^6-3 z^5 a^5+4 z^3 a^5-4 z a^5+a^5 z^{-1} -2 z^4 a^4+z^2 a^4-z^3 a^3+z a^3 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|





