In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 7]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 7]] |
Out[3]= | PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[16, 13, 17, 14], X[14, 7, 15, 8],
X[8, 15, 9, 16], X[18, 11, 5, 12], X[12, 17, 13, 18], X[2, 5, 3, 6],
X[4, 9, 1, 10]] |
In[4]:= | GaussCode[Link[9, Alternating, 7]] |
Out[4]= | GaussCode[{1, -8, 2, -9}, {8, -1, 4, -5, 9, -2, 6, -7, 3, -4, 5, -3, 7,
-6}] |
In[5]:= | BR[Link[9, Alternating, 7]] |
Out[5]= | BR[Link[9, Alternating, 7]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 7]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 7]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 7]], KnotSignature[Link[9, Alternating, 7]]} |
Out[9]= | {Infinity, -3} |
In[10]:= | J=Jones[Link[9, Alternating, 7]][q] |
Out[10]= | -(21/2) 2 4 5 5 7 5 4 2
q - ----- + ----- - ----- + ----- - ----- + ---- - ---- + ---- -
19/2 17/2 15/2 13/2 11/2 9/2 7/2 5/2
q q q q q q q q
-(3/2)
q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 7]][q] |
Out[12]= | -34 2 -28 -26 2 -22 3 3 2 2 -12
-q - --- - q - q + --- + q + --- + --- + --- + --- - q +
32 24 20 18 16 14
q q q q q q
-10 -8 -6 -4
q + q - q + q |
In[13]:= | Kauffman[Link[9, Alternating, 7]][a, z] |
Out[13]= | 5 9 11
6 8 10 12 a 2 a a 3 5 7
-a + 3 a + 5 a + 2 a + -- - ---- - --- + a z - 3 a z - a z +
z z z
9 11 4 2 6 2 8 2 10 2 12 2
5 a z + 2 a z + a z + a z - 10 a z - 15 a z - 5 a z -
3 3 5 3 7 3 9 3 11 3 4 4 6 4
a z + 3 a z - 2 a z - 12 a z - 6 a z - 2 a z + 2 a z +
8 4 10 4 12 4 5 5 7 5 9 5
13 a z + 13 a z + 4 a z - 3 a z + 5 a z + 15 a z +
11 5 6 6 8 6 10 6 12 6 7 7 9 7
7 a z - 3 a z - 3 a z - a z - a z - 3 a z - 5 a z -
11 7 8 8 10 8
2 a z - a z - a z |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 7]], Vassiliev[3][Link[9, Alternating, 7]]} |
Out[14]= | 211
{0, ---}
24 |
In[15]:= | Kh[Link[9, Alternating, 7]][q, t] |
Out[15]= | -4 -2 1 1 1 3 1 2
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
22 9 20 8 18 8 18 7 16 7 16 6
q t q t q t q t q t q t
3 3 2 4 4 2 3 2
------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- +
14 6 14 5 12 5 12 4 10 4 10 3 8 3 8 2
q t q t q t q t q t q t q t q t
2 2
----- + ----
6 2 4
q t q t |