In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[8, Alternating, 1]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, Alternating, 1]] |
Out[3]= | PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[4, 15, 1, 16], X[12, 10, 13, 9],
X[8, 4, 9, 3], X[10, 5, 11, 6], X[16, 11, 5, 12], X[2, 14, 3, 13]] |
In[4]:= | GaussCode[Link[8, Alternating, 1]] |
Out[4]= | GaussCode[{1, -8, 5, -3}, {6, -1, 2, -5, 4, -6, 7, -4, 8, -2, 3, -7}] |
In[5]:= | BR[Link[8, Alternating, 1]] |
Out[5]= | BR[Link[8, Alternating, 1]] |
In[6]:= | alex = Alexander[Link[8, Alternating, 1]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[8, Alternating, 1]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, Alternating, 1]], KnotSignature[Link[8, Alternating, 1]]} |
Out[9]= | {Infinity, -1} |
In[10]:= | J=Jones[Link[8, Alternating, 1]][q] |
Out[10]= | -(11/2) 3 5 7 7 7 3/2
q - ---- + ---- - ---- + ---- - ------- + 5 Sqrt[q] - 4 q +
9/2 7/2 5/2 3/2 Sqrt[q]
q q q q
5/2
q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, Alternating, 1]][q] |
Out[12]= | -18 2 -12 -10 -6 2 2 4 6 8
4 - q + --- - q + q - q + -- + q + q + 2 q - q
14 4
q q |
In[13]:= | Kauffman[Link[8, Alternating, 1]][a, z] |
Out[13]= | 1 a 3 5 2 2 2 4 2
1 - --- - - - 2 a z - 4 a z - 2 a z - 2 z - 5 a z - 2 a z +
a z z
3 4
6 2 5 z 3 3 3 5 3 4 z 2 4
a z + ---- + 11 a z + 10 a z + 4 a z + 7 z - -- + 14 a z +
a 2
a
5
4 4 6 4 4 z 5 3 5 5 5 6
5 a z - a z - ---- - 5 a z - 4 a z - 3 a z - 5 z -
a
2 6 4 6 7 3 7
9 a z - 4 a z - 2 a z - 2 a z |
In[14]:= | {Vassiliev[2][Link[8, Alternating, 1]], Vassiliev[3][Link[8, Alternating, 1]]} |
Out[14]= | 1
{0, -}
2 |
In[15]:= | Kh[Link[8, Alternating, 1]][q, t] |
Out[15]= | 4 1 2 1 3 2 4 3
5 + -- + ------ + ------ + ----- + ----- + ----- + ----- + ----- +
2 12 5 10 4 8 4 8 3 6 3 6 2 4 2
q q t q t q t q t q t q t q t
3 4 2 2 2 4 2 6 3
---- + ---- + 3 t + 2 q t + q t + 3 q t + q t
4 2
q t q t |