In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[8, NonAlternating, 8]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, NonAlternating, 8]] |
Out[3]= | PD[X[6, 1, 7, 2], X[2, 5, 3, 6], X[16, 11, 13, 12], X[3, 11, 4, 10],
X[9, 1, 10, 4], X[7, 15, 8, 14], X[13, 5, 14, 8], X[12, 15, 9, 16]] |
In[4]:= | GaussCode[Link[8, NonAlternating, 8]] |
Out[4]= | GaussCode[{1, -2, -4, 5}, {2, -1, -6, 7}, {-5, 4, 3, -8},
{-7, 6, 8, -3}] |
In[5]:= | BR[Link[8, NonAlternating, 8]] |
Out[5]= | BR[Link[8, NonAlternating, 8]] |
In[6]:= | alex = Alexander[Link[8, NonAlternating, 8]][t] |
Out[6]= | Indeterminate |
In[7]:= | Conway[Link[8, NonAlternating, 8]][z] |
Out[7]= | Indeterminate |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, NonAlternating, 8]], KnotSignature[Link[8, NonAlternating, 8]]} |
Out[9]= | {Indeterminate, 0} |
In[10]:= | J=Jones[Link[8, NonAlternating, 8]][q] |
Out[10]= | -(7/2) -(3/2) 2 3/2 7/2
-q - q - ------- - 2 Sqrt[q] - q - q
Sqrt[q] |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, NonAlternating, 8]][q] |
Out[12]= | -12 2 4 6 9 12 2 4 6 8
13 + q + --- + -- + -- + -- + -- + 12 q + 9 q + 6 q + 4 q +
10 8 6 4 2
q q q q q
10 12
2 q + q |
In[13]:= | Kauffman[Link[8, NonAlternating, 8]][a, z] |
Out[13]= | 3 2
8 2 1 3 3 a a 6 3 3 a 4
-15 - -- - 8 a - ----- - ---- - --- - -- + -- + ----- + ---- + ---- +
2 3 3 3 3 3 2 2 2 2 3
a a z a z z z z a z z a z
3 2
9 9 a 4 a 6 z 14 z 3 2 6 z
--- + --- + ---- - --- - ---- - 14 a z - 6 a z + 12 z + ---- +
a z z z 3 a 2
a a
3 3 4 5
2 2 5 z 7 z 3 3 3 4 z 2 4 z
6 a z + ---- + ---- + 7 a z + 5 a z - 2 z - -- - a z - -- -
3 a 2 3
a a a
5
z 5 3 5
-- - a z - a z
a |
In[14]:= | {Vassiliev[2][Link[8, NonAlternating, 8]], Vassiliev[3][Link[8, NonAlternating, 8]]} |
Out[14]= | {0, 0} |
In[15]:= | Kh[Link[8, NonAlternating, 8]][q, t] |
Out[15]= | 3 2 1 1 1 1 4 2 6 4 8 4
6 + -- + 3 q + ----- + ----- + ----- + - + t + q t + q t + q t
2 8 4 6 4 4 2 t
q q t q t q t |