In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 49]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[15, 20, 16, 1],
X[9, 16, 10, 17], X[11, 18, 12, 19], X[17, 10, 18, 11],
X[19, 12, 20, 13], X[13, 6, 14, 7], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[10, 49]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -3, 9, -10, 2, -5, 7, -6, 8, -9, 3, -4, 5, -7,
6, -8, 4] |
In[4]:= | DTCode[Knot[10, 49]] |
Out[4]= | DTCode[4, 8, 14, 2, 16, 18, 6, 20, 10, 12] |
In[5]:= | br = BR[Knot[10, 49]] |
Out[5]= | BR[4, {-1, -1, -1, -1, 2, -1, -3, -2, -2, -2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 49]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 49]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 49]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 3, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 49]][t] |
Out[10]= | 3 8 12 2 3
-13 + -- - -- + -- + 12 t - 8 t + 3 t
3 2 t
t t |
In[11]:= | Conway[Knot[10, 49]][z] |
Out[11]= | 2 4 6
1 + 7 z + 10 z + 3 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 49]} |
In[13]:= | {KnotDet[Knot[10, 49]], KnotSignature[Knot[10, 49]]} |
Out[13]= | {59, -6} |
In[14]:= | Jones[Knot[10, 49]][q] |
Out[14]= | -13 3 5 8 9 10 9 6 5 2 -3
q - --- + --- - --- + -- - -- + -- - -- + -- - -- + q
12 11 10 9 8 7 6 5 4
q q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 49]} |
In[16]:= | A2Invariant[Knot[10, 49]][q] |
Out[16]= | -40 -38 -36 3 2 -28 2 3 3 2 2
q + q - q - --- - --- - q - --- + --- + --- + --- + --- -
32 30 26 24 20 18 14
q q q q q q q
-12 -10
q + q |
In[17]:= | HOMFLYPT[Knot[10, 49]][a, z] |
Out[17]= | 6 8 10 12 6 2 8 2 10 2 12 2
a + 5 a - 7 a + 2 a + 4 a z + 12 a z - 10 a z + a z +
6 4 8 4 10 4 6 6 8 6
4 a z + 9 a z - 3 a z + a z + 2 a z |
In[18]:= | Kauffman[Knot[10, 49]][a, z] |
Out[18]= | 6 8 10 12 9 11 15 6 2
-a + 5 a + 7 a + 2 a - 9 a z - 10 a z + a z + 4 a z -
8 2 10 2 12 2 16 2 7 3 9 3
13 a z - 20 a z - 2 a z - a z + 3 a z + 22 a z +
11 3 13 3 15 3 6 4 8 4 10 4
24 a z + a z - 4 a z - 4 a z + 15 a z + 26 a z +
12 4 14 4 16 4 7 5 9 5 11 5
2 a z - 4 a z + a z - 6 a z - 18 a z - 19 a z -
13 5 15 5 6 6 8 6 10 6 12 6
4 a z + 3 a z + a z - 11 a z - 19 a z - 3 a z +
14 6 7 7 9 7 11 7 13 7 8 8
4 a z + 2 a z + 3 a z + 5 a z + 4 a z + 3 a z +
10 8 12 8 9 9 11 9
6 a z + 3 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 49]], Vassiliev[3][Knot[10, 49]]} |
Out[19]= | {7, -16} |
In[20]:= | Kh[Knot[10, 49]][q, t] |
Out[20]= | -7 -5 1 2 1 3 2 5
q + q + ------- + ------ + ------ + ------ + ------ + ------ +
27 10 25 9 23 9 23 8 21 8 21 7
q t q t q t q t q t q t
3 4 5 6 4 3 6
------ + ------ + ------ + ------ + ------ + ------ + ------ +
19 7 19 6 17 6 17 5 15 5 15 4 13 4
q t q t q t q t q t q t q t
3 3 2 3 2
------ + ------ + ------ + ----- + ----
13 3 11 3 11 2 9 2 7
q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[10, 49], 2][q] |
Out[21]= | -36 3 -34 7 13 4 20 32 7 41 56
q - --- + q + --- - --- + --- + --- - --- + --- + --- - --- +
35 33 32 31 30 29 28 27 26
q q q q q q q q q
6 63 69 3 72 62 14 65 41 20 46
--- + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- -
25 24 23 22 21 20 19 18 17 16 15
q q q q q q q q q q q
18 19 24 3 10 7 -8 2 -6
--- - --- + --- - --- - --- + -- + q - -- + q
14 13 12 11 10 9 7
q q q q q q q |