In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[7, 3]] |
Out[2]= | PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[14, 8, 1, 7], X[8, 14, 9, 13],
X[12, 6, 13, 5], X[2, 10, 3, 9], X[4, 12, 5, 11]] |
In[3]:= | GaussCode[Knot[7, 3]] |
Out[3]= | GaussCode[1, -6, 2, -7, 5, -1, 3, -4, 6, -2, 7, -5, 4, -3] |
In[4]:= | DTCode[Knot[7, 3]] |
Out[4]= | DTCode[6, 10, 12, 14, 2, 4, 8] |
In[5]:= | br = BR[Knot[7, 3]] |
Out[5]= | BR[3, {1, 1, 1, 1, 1, 2, -1, 2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 8} |
In[7]:= | BraidIndex[Knot[7, 3]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[7, 3]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[7, 3]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 2, {3, 4}, 1} |
In[10]:= | alex = Alexander[Knot[7, 3]][t] |
Out[10]= | 2 3 2
3 + -- - - - 3 t + 2 t
2 t
t |
In[11]:= | Conway[Knot[7, 3]][z] |
Out[11]= | 2 4
1 + 5 z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[7, 3]} |
In[13]:= | {KnotDet[Knot[7, 3]], KnotSignature[Knot[7, 3]]} |
Out[13]= | {13, 4} |
In[14]:= | Jones[Knot[7, 3]][q] |
Out[14]= | 2 3 4 5 6 7 8 9
q - q + 2 q - 2 q + 3 q - 2 q + q - q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[7, 3]} |
In[16]:= | A2Invariant[Knot[7, 3]][q] |
Out[16]= | 6 10 14 16 18 20 22 24 26 28
q + q + q + 2 q + q + q - q - q - q - q |
In[17]:= | HOMFLYPT[Knot[7, 3]][a, z] |
Out[17]= | 2 2 2 4 4
-2 2 -4 z 3 z 3 z z z
-- + -- + a - -- + ---- + ---- + -- + --
8 6 8 6 4 6 4
a a a a a a a |
In[18]:= | Kauffman[Knot[7, 3]][a, z] |
Out[18]= | 2 2 2 2 3 3
-2 2 -4 2 z z 3 z z 6 z 4 z 3 z z z
-- - -- + a - --- + -- + --- - --- + ---- + ---- - ---- + --- - -- -
8 6 11 9 7 10 8 6 4 11 9
a a a a a a a a a a a
3 3 4 4 4 4 5 5 5 6 6
4 z 2 z z 3 z 3 z z z 2 z z z z
---- - ---- + --- - ---- - ---- + -- + -- + ---- + -- + -- + --
7 5 10 8 6 4 9 7 5 8 6
a a a a a a a a a a a |
In[19]:= | {Vassiliev[2][Knot[7, 3]], Vassiliev[3][Knot[7, 3]]} |
Out[19]= | {5, 11} |
In[20]:= | Kh[Knot[7, 3]][q, t] |
Out[20]= | 3 5 5 7 2 9 2 9 3 11 3 11 4 13 4
q + q + q t + q t + q t + q t + q t + 2 q t + q t +
15 5 15 6 19 7
2 q t + q t + q t |
In[21]:= | ColouredJones[Knot[7, 3], 2][q] |
Out[21]= | 4 5 7 8 9 10 11 12 13 14
q - q + 3 q - 2 q - 2 q + 5 q - 2 q - 4 q + 7 q - 2 q -
15 16 17 18 19 20 21 22 24
6 q + 8 q - 2 q - 5 q + 5 q - q - 3 q + 2 q - q +
25
q |