10 74
|
|
|
|
Visit 10 74's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 74's page at Knotilus! Visit 10 74's page at the original Knot Atlas! |
Knot presentations
| Planar diagram presentation | X1425 X5,14,6,15 X3,13,4,12 X13,3,14,2 X11,18,12,19 X9,20,10,1 X19,10,20,11 X17,6,18,7 X7,16,8,17 X15,8,16,9 |
| Gauss code | -1, 4, -3, 1, -2, 8, -9, 10, -6, 7, -5, 3, -4, 2, -10, 9, -8, 5, -7, 6 |
| Dowker-Thistlethwaite code | 4 12 14 16 20 18 2 8 6 10 |
| Conway Notation | [3,3,21+] |
|
Length is 14, width is 5. Braid index is 5. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 4 | |
| 5 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{37}+q^{33}+2 q^{29}-3 q^{27}-q^{25}-3 q^{23}-2 q^{19}+q^{17}+q^{15}+2 q^{11}+q^9+3 q^7-q^5+3 q^3-q- q^{-3} + q^{-5} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{60}-q^{58}+3 q^{56}-5 q^{54}+8 q^{52}-11 q^{50}+14 q^{48}-16 q^{46}+17 q^{44}-17 q^{42}+12 q^{40}-8 q^{38}-q^{36}+9 q^{34}-18 q^{32}+25 q^{30}-31 q^{28}+34 q^{26}-34 q^{24}+30 q^{22}-23 q^{20}+16 q^{18}-6 q^{16}-q^{14}+10 q^{12}-14 q^{10}+18 q^8-17 q^6+17 q^4-13 q^2+10-7 q^{-2} +4 q^{-4} -2 q^{-6} + q^{-8} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{98}-q^{94}-q^{92}+2 q^{90}+3 q^{88}-2 q^{86}-7 q^{84}-3 q^{82}+7 q^{80}+7 q^{78}-7 q^{76}-14 q^{74}+18 q^{70}+13 q^{68}-11 q^{66}-14 q^{64}+7 q^{62}+22 q^{60}+5 q^{58}-16 q^{56}-11 q^{54}+7 q^{52}+7 q^{50}-9 q^{48}-14 q^{46}+9 q^{42}-2 q^{40}-12 q^{38}-q^{36}+14 q^{34}+7 q^{32}-10 q^{30}-9 q^{28}+12 q^{26}+15 q^{24}-5 q^{22}-18 q^{20}-q^{18}+18 q^{16}+11 q^{14}-11 q^{12}-15 q^{10}+2 q^8+15 q^6+6 q^4-7 q^2-8+ q^{-2} +6 q^{-4} +2 q^{-6} -2 q^{-8} -2 q^{-10} + q^{-14} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{142}-q^{140}+3 q^{138}-5 q^{136}+4 q^{134}-5 q^{132}-q^{130}+9 q^{128}-18 q^{126}+27 q^{124}-29 q^{122}+20 q^{120}+3 q^{118}-30 q^{116}+57 q^{114}-75 q^{112}+68 q^{110}-34 q^{108}-17 q^{106}+69 q^{104}-100 q^{102}+106 q^{100}-58 q^{98}+7 q^{96}+44 q^{94}-85 q^{92}+83 q^{90}-41 q^{88}-16 q^{86}+55 q^{84}-70 q^{82}+48 q^{80}+10 q^{78}-72 q^{76}+98 q^{74}-107 q^{72}+67 q^{70}-3 q^{68}-85 q^{66}+135 q^{64}-145 q^{62}+115 q^{60}-41 q^{58}-41 q^{56}+98 q^{54}-119 q^{52}+99 q^{50}-45 q^{48}-17 q^{46}+65 q^{44}-65 q^{42}+38 q^{40}+19 q^{38}-59 q^{36}+75 q^{34}-56 q^{32}+10 q^{30}+39 q^{28}-80 q^{26}+98 q^{24}-78 q^{22}+42 q^{20}+9 q^{18}-48 q^{16}+66 q^{14}-66 q^{12}+51 q^{10}-26 q^8-q^6+19 q^4-29 q^2+28-19 q^{-2} +12 q^{-4} -2 q^{-6} -3 q^{-8} +5 q^{-10} -6 q^{-12} +4 q^{-14} -2 q^{-16} + q^{-18} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 74"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 63, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_67, K11n68, ...}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {...}
Vassiliev invariants
| V2 and V3: | (0, 2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 10 74. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^4-3 q^3+2 q^2+7 q-16+7 q^{-1} +24 q^{-2} -43 q^{-3} +11 q^{-4} +54 q^{-5} -72 q^{-6} +6 q^{-7} +82 q^{-8} -86 q^{-9} -6 q^{-10} +90 q^{-11} -75 q^{-12} -19 q^{-13} +79 q^{-14} -47 q^{-15} -25 q^{-16} +53 q^{-17} -19 q^{-18} -19 q^{-19} +23 q^{-20} -4 q^{-21} -9 q^{-22} +6 q^{-23} -2 q^{-25} + q^{-26} } |
| 3 | Not Available |
| 4 | Not Available |
| 5 | Not Available |
| 6 | Not Available |
| 7 | Not Available |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
| See/edit the Rolfsen_Splice_Template.
Back to the top. |
|



