In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 101]] |
Out[2]= | PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[14, 6, 15, 5], X[20, 16, 1, 15],
X[16, 12, 17, 11], X[12, 20, 13, 19], X[18, 8, 19, 7],
X[6, 14, 7, 13], X[8, 18, 9, 17], X[2, 10, 3, 9]] |
In[3]:= | GaussCode[Knot[10, 101]] |
Out[3]= | GaussCode[1, -10, 2, -1, 3, -8, 7, -9, 10, -2, 5, -6, 8, -3, 4, -5, 9,
-7, 6, -4] |
In[4]:= | DTCode[Knot[10, 101]] |
Out[4]= | DTCode[4, 10, 14, 18, 2, 16, 6, 20, 8, 12] |
In[5]:= | br = BR[Knot[10, 101]] |
Out[5]= | BR[5, {1, 1, 1, 2, -1, 3, -2, 1, 3, 2, 2, 4, -3, 4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 14} |
In[7]:= | BraidIndex[Knot[10, 101]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 101]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 101]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, {2, 3}, 2, 3, NotAvailable, 2} |
In[10]:= | alex = Alexander[Knot[10, 101]][t] |
Out[10]= | 7 21 2
29 + -- - -- - 21 t + 7 t
2 t
t |
In[11]:= | Conway[Knot[10, 101]][z] |
Out[11]= | 2 4
1 + 7 z + 7 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 101], Knot[11, Alternating, 200]} |
In[13]:= | {KnotDet[Knot[10, 101]], KnotSignature[Knot[10, 101]]} |
Out[13]= | {85, 4} |
In[14]:= | Jones[Knot[10, 101]][q] |
Out[14]= | 2 3 4 5 6 7 8 9 10
q - 3 q + 7 q - 10 q + 14 q - 14 q + 13 q - 11 q + 7 q -
11 12
4 q + q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 101]} |
In[16]:= | A2Invariant[Knot[10, 101]][q] |
Out[16]= | 6 8 10 12 14 16 20 22 24 26
q - 2 q + 2 q + q - 2 q + 4 q + 2 q + 2 q - q + 2 q -
28 30 34 36 38
4 q - q - 3 q + q + q |
In[17]:= | HOMFLYPT[Knot[10, 101]][a, z] |
Out[17]= | 2 2 2 2 4 4 4
-12 4 2 2 4 z 5 z 5 z z 3 z 3 z z
a - --- + -- + -- - ---- + ---- + ---- + -- + ---- + ---- + --
10 8 6 10 8 6 4 8 6 4
a a a a a a a a a a |
In[18]:= | Kauffman[Knot[10, 101]][a, z] |
Out[18]= | 2 2 2 2 2
-12 4 2 2 z 9 z 8 z z z 9 z z 7 z
a + --- + -- - -- - --- - --- - --- + --- + --- - ---- - -- + ---- -
10 8 6 13 11 9 14 12 10 8 6
a a a a a a a a a a a
2 3 3 3 3 3 4 4 4 4
z 8 z 28 z 26 z 4 z 2 z 2 z 3 z 15 z z
-- + ---- + ----- + ----- + ---- - ---- - ---- + ---- + ----- + -- -
4 13 11 9 7 5 14 12 10 8
a a a a a a a a a a
4 4 5 5 5 5 5 6 6
8 z z 11 z 31 z 31 z 8 z 3 z z 11 z
---- + -- - ----- - ----- - ----- - ---- + ---- + --- - ----- -
6 4 13 11 9 7 5 14 12
a a a a a a a a a
6 6 6 7 7 7 7 8 8
24 z 6 z 6 z 4 z 7 z 10 z 7 z 5 z 11 z
----- - ---- + ---- + ---- + ---- + ----- + ---- + ---- + ----- +
10 8 6 13 11 9 7 12 10
a a a a a a a a a
8 9 9
6 z 2 z 2 z
---- + ---- + ----
8 11 9
a a a |
In[19]:= | {Vassiliev[2][Knot[10, 101]], Vassiliev[3][Knot[10, 101]]} |
Out[19]= | {7, 17} |
In[20]:= | Kh[Knot[10, 101]][q, t] |
Out[20]= | 3 5 5 7 2 9 2 9 3 11 3 11 4
q + q + 3 q t + 4 q t + 3 q t + 6 q t + 4 q t + 8 q t +
13 4 13 5 15 5 15 6 17 6 17 7
6 q t + 6 q t + 8 q t + 7 q t + 6 q t + 4 q t +
19 7 19 8 21 8 21 9 23 9 25 10
7 q t + 3 q t + 4 q t + q t + 3 q t + q t |
In[21]:= | ColouredJones[Knot[10, 101], 2][q] |
Out[21]= | 4 5 6 7 8 9 10 11 12
q - 3 q + 3 q + 6 q - 18 q + 15 q + 20 q - 59 q + 39 q +
13 14 15 16 17 18 19
55 q - 120 q + 50 q + 104 q - 161 q + 35 q + 137 q -
20 21 22 23 24 25 26
156 q + 3 q + 138 q - 114 q - 26 q + 107 q - 56 q -
27 28 29 30 31 32 33 34
35 q + 56 q - 12 q - 21 q + 15 q + q - 4 q + q |