K11a25

From Knot Atlas
Revision as of 19:59, 28 August 2005 by ScottTestRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

K11a24.gif

K11a24

K11a26.gif

K11a26

K11a25.gif Visit K11a25's page at Knotilus!

Visit K11a25's page at the original Knot Atlas!

K11a25 Quick Notes


K11a25 Further Notes and Views

Knot presentations

Planar diagram presentation X4251 X8493 X12,5,13,6 X2837 X18,10,19,9 X20,11,21,12 X6,13,7,14 X10,16,11,15 X22,18,1,17 X14,19,15,20 X16,22,17,21
Gauss code 1, -4, 2, -1, 3, -7, 4, -2, 5, -8, 6, -3, 7, -10, 8, -11, 9, -5, 10, -6, 11, -9
Dowker-Thistlethwaite code 4 8 12 2 18 20 6 10 22 14 16
Conway Notation [.20.(21,2)]

Three dimensional invariants

Symmetry type Chiral
Unknotting number
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a25/ThurstonBennequinNumber
Hyperbolic Volume 17.7863
A-Polynomial See Data:K11a25/A-polynomial

[edit Notes for K11a25's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for K11a25's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 155, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (-1, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of K11a25. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-101234567χ
17           1-1
15          3 3
13         61 -5
11        103  7
9       126   -6
7      1310    3
5     1212     0
3    1013      -3
1   713       6
-1  39        -6
-3 17         6
-5 3          -3
-71           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[11, Alternating, 25]]
Out[2]=  
11
In[3]:=
PD[Knot[11, Alternating, 25]]
Out[3]=  
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 5, 13, 6], X[2, 8, 3, 7], 
 X[18, 10, 19, 9], X[20, 11, 21, 12], X[6, 13, 7, 14], 

 X[10, 16, 11, 15], X[22, 18, 1, 17], X[14, 19, 15, 20], 

X[16, 22, 17, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 25]]
Out[4]=  
GaussCode[1, -4, 2, -1, 3, -7, 4, -2, 5, -8, 6, -3, 7, -10, 8, -11, 9, 
  -5, 10, -6, 11, -9]
In[5]:=
BR[Knot[11, Alternating, 25]]
Out[5]=  
BR[Knot[11, Alternating, 25]]
In[6]:=
alex = Alexander[Knot[11, Alternating, 25]][t]
Out[6]=  
       -4   6    18   33              2      3    4

-39 - t + -- - -- + -- + 33 t - 18 t + 6 t - t

            3    2   t
t t
In[7]:=
Conway[Knot[11, Alternating, 25]][z]
Out[7]=  
     2      4      6    8
1 - z  - 2 z  - 2 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[11, Alternating, 19], Knot[11, Alternating, 25], 
  Knot[11, Alternating, 281]}
In[9]:=
{KnotDet[Knot[11, Alternating, 25]], KnotSignature[Knot[11, Alternating, 25]]}
Out[9]=  
{155, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 25]][q]
Out[10]=  
       -3   4    10              2       3       4       5      6

-16 + q - -- + -- + 22 q - 25 q + 25 q - 22 q + 16 q - 9 q +

            2   q
           q

    7    8
4 q - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[11, Alternating, 19], Knot[11, Alternating, 25]}
In[12]:=
A2Invariant[Knot[11, Alternating, 25]][q]
Out[12]=  
 -8   2    4     -2      2      4      6      8    10      12      14

q - -- + -- - q + 4 q - 6 q + 4 q - 4 q + q + 2 q - 3 q +

      6    4
     q    q

    16      18    22    24
5 q - 2 q + q - q
In[13]:=
Kauffman[Knot[11, Alternating, 25]][a, z]
Out[13]=  
                                                            2    2
    -6   4    5    2 z   6 z   6 z   3 z            2   2 z    z

3 + a + -- + -- - --- - --- - --- - --- - a z - 8 z + ---- - -- -

          4    2    7     5     3     a                   8     6
         a    a    a     a     a                         a     a

     2       2            3      3       3       3       3
 18 z    24 z     2  2   z    7 z    23 z    21 z    11 z         3
 ----- - ----- + a  z  - -- + ---- + ----- + ----- + ----- + 5 a z  + 
   4       2              9     7      5       3       a
  a       a              a     a      a       a

            4      4       4       4              5       5       5
     4   5 z    5 z    43 z    50 z       2  4   z    11 z    26 z
 15 z  - ---- + ---- + ----- + ----- - 2 a  z  + -- - ----- - ----- - 
           8      6      4       2                9     7       5
          a      a      a       a                a     a       a

     5       5                       6       6       6       6
 17 z    11 z         5       6   4 z    12 z    52 z    55 z
 ----- - ----- - 8 a z  - 18 z  + ---- - ----- - ----- - ----- + 
   3       a                        8      6       4       2
  a                                a      a       a       a

            7      7       7      7                       8       8
  2  6   8 z    4 z    14 z    6 z         7      8   10 z    21 z
 a  z  + ---- + ---- - ----- - ---- + 4 a z  + 8 z  + ----- + ----- + 
           7      5      3      a                       6       4
          a      a      a                              a       a

     8      9       9      9      10      10
 19 z    7 z    14 z    7 z    2 z     2 z
 ----- + ---- + ----- + ---- + ----- + -----
   2       5      3      a       4       2
a a a a a
In[14]:=
{Vassiliev[2][Knot[11, Alternating, 25]], Vassiliev[3][Knot[11, Alternating, 25]]}
Out[14]=  
{0, 0}
In[15]:=
Kh[Knot[11, Alternating, 25]][q, t]
Out[15]=  
           3     1       3       1       7      3      9    7 q

13 q + 10 q + ----- + ----- + ----- + ----- + ---- + --- + --- +

               7  4    5  3    3  3    3  2      2   q t    t
              q  t    q  t    q  t    q  t    q t

     3         5         5  2       7  2       7  3       9  3
 13 q  t + 12 q  t + 12 q  t  + 13 q  t  + 10 q  t  + 12 q  t  + 

    9  4       11  4      11  5      13  5    13  6      15  6    17  7
6 q t + 10 q t + 3 q t + 6 q t + q t + 3 q t + q t