K11a212

From Knot Atlas
Revision as of 11:52, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

K11a211.gif

K11a211

K11a213.gif

K11a213

K11a212.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a212 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X12,4,13,3 X16,5,17,6 X22,8,1,7 X18,10,19,9 X2,12,3,11 X8,14,9,13 X6,15,7,16 X20,18,21,17 X10,20,11,19 X14,22,15,21
Gauss code 1, -6, 2, -1, 3, -8, 4, -7, 5, -10, 6, -2, 7, -11, 8, -3, 9, -5, 10, -9, 11, -4
Dowker-Thistlethwaite code 4 12 16 22 18 2 8 6 20 10 14
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a212 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for K11a212's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 153, 4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11a212/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a212/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (2, 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of K11a212. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-10123456789χ
23           1-1
21          4 4
19         71 -6
17        104  6
15       137   -6
13      1210    2
11     1213     1
9    912      -3
7   512       7
5  39        -6
3 16         5
1 2          -2
-11           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a211.gif

K11a211

K11a213.gif

K11a213