K11a212

From Knot Atlas
Jump to navigationJump to search

K11a211.gif

K11a211

K11a213.gif

K11a213

K11a212.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a212 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X12,4,13,3 X16,5,17,6 X22,8,1,7 X18,10,19,9 X2,12,3,11 X8,14,9,13 X6,15,7,16 X20,18,21,17 X10,20,11,19 X14,22,15,21
Gauss code 1, -6, 2, -1, 3, -8, 4, -7, 5, -10, 6, -2, 7, -11, 8, -3, 9, -5, 10, -9, 11, -4
Dowker-Thistlethwaite code 4 12 16 22 18 2 8 6 20 10 14
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation K11a212 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -4

[edit Notes for K11a212's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -3 t^3+16 t^2-35 t+45-35 t^{-1} +16 t^{-2} -3 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -3 z^6-2 z^4+2 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 153, 4 }
Jones polynomial [math]\displaystyle{ -q^{11}+5 q^{10}-11 q^9+17 q^8-23 q^7+25 q^6-24 q^5+21 q^4-14 q^3+8 q^2-3 q+1 }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^6 a^{-4} -2 z^6 a^{-6} +z^4 a^{-2} -z^4 a^{-4} -5 z^4 a^{-6} +3 z^4 a^{-8} +2 z^2 a^{-2} +z^2 a^{-4} -4 z^2 a^{-6} +4 z^2 a^{-8} -z^2 a^{-10} + a^{-2} + a^{-4} - a^{-6} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ 2 z^{10} a^{-6} +2 z^{10} a^{-8} +5 z^9 a^{-5} +13 z^9 a^{-7} +8 z^9 a^{-9} +5 z^8 a^{-4} +13 z^8 a^{-6} +21 z^8 a^{-8} +13 z^8 a^{-10} +3 z^7 a^{-3} -3 z^7 a^{-5} -13 z^7 a^{-7} +4 z^7 a^{-9} +11 z^7 a^{-11} +z^6 a^{-2} -9 z^6 a^{-4} -36 z^6 a^{-6} -48 z^6 a^{-8} -17 z^6 a^{-10} +5 z^6 a^{-12} -7 z^5 a^{-3} -9 z^5 a^{-5} -14 z^5 a^{-7} -28 z^5 a^{-9} -15 z^5 a^{-11} +z^5 a^{-13} -3 z^4 a^{-2} +5 z^4 a^{-4} +31 z^4 a^{-6} +31 z^4 a^{-8} +4 z^4 a^{-10} -4 z^4 a^{-12} +5 z^3 a^{-3} +12 z^3 a^{-5} +19 z^3 a^{-7} +17 z^3 a^{-9} +5 z^3 a^{-11} +3 z^2 a^{-2} -2 z^2 a^{-4} -11 z^2 a^{-6} -7 z^2 a^{-8} -z^2 a^{-10} -z a^{-3} -5 z a^{-5} -5 z a^{-7} -z a^{-9} - a^{-2} + a^{-4} + a^{-6} }[/math]
The A2 invariant Data:K11a212/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a212/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (2, 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 8 }[/math] [math]\displaystyle{ 24 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{316}{3} }[/math] [math]\displaystyle{ \frac{92}{3} }[/math] [math]\displaystyle{ 192 }[/math] [math]\displaystyle{ 464 }[/math] [math]\displaystyle{ 96 }[/math] [math]\displaystyle{ 120 }[/math] [math]\displaystyle{ \frac{256}{3} }[/math] [math]\displaystyle{ 288 }[/math] [math]\displaystyle{ \frac{2528}{3} }[/math] [math]\displaystyle{ \frac{736}{3} }[/math] [math]\displaystyle{ \frac{29311}{15} }[/math] [math]\displaystyle{ -\frac{2084}{15} }[/math] [math]\displaystyle{ \frac{53284}{45} }[/math] [math]\displaystyle{ \frac{449}{9} }[/math] [math]\displaystyle{ \frac{2191}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of K11a212. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-10123456789χ
23           1-1
21          4 4
19         71 -6
17        104  6
15       137   -6
13      1210    2
11     1213     1
9    912      -3
7   512       7
5  39        -6
3 16         5
1 2          -2
-11           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=3 }[/math] [math]\displaystyle{ i=5 }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{12} }[/math] [math]\displaystyle{ {\mathbb Z}^{12} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{12} }[/math] [math]\displaystyle{ {\mathbb Z}^{12} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{13} }[/math] [math]\displaystyle{ {\mathbb Z}^{13} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{10} }[/math] [math]\displaystyle{ {\mathbb Z}^{10} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=9 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a211.gif

K11a211

K11a213.gif

K11a213