K11n51

From Knot Atlas
Revision as of 16:16, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11n50.gif

K11n50

K11n52.gif

K11n52

K11n51.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n51 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X14,6,15,5 X2837 X9,16,10,17 X11,19,12,18 X6,14,7,13 X15,22,16,1 X17,20,18,21 X19,11,20,10 X21,12,22,13
Gauss code 1, -4, 2, -1, 3, -7, 4, -2, -5, 10, -6, 11, 7, -3, -8, 5, -9, 6, -10, 9, -11, 8
Dowker-Thistlethwaite code 4 8 14 2 -16 -18 6 -22 -20 -10 -12
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11n51 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11n51/ThurstonBennequinNumber
Hyperbolic Volume 9.50422
A-Polynomial See Data:K11n51/A-polynomial

[edit Notes for K11n51's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for K11n51's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 29, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11n51/QuantumInvariant/A2/1,0
The G2 invariant Data:K11n51/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_127, 10_150,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (1, 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of K11n51. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-101234567χ
15         1-1
13        1 1
11       21 -1
9      21  1
7     22   0
5    32    1
3   12     1
1  23      -1
-1 12       1
-3 1        -1
-51         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n50.gif

K11n50

K11n52.gif

K11n52