K11a250

From Knot Atlas
Revision as of 16:19, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11a249.gif

K11a249

K11a251.gif

K11a251

K11a250.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a250 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X8493 X12,5,13,6 X2837 X14,10,15,9 X18,11,19,12 X4,13,5,14 X20,16,21,15 X22,18,1,17 X10,19,11,20 X16,22,17,21
Gauss code 1, -4, 2, -7, 3, -1, 4, -2, 5, -10, 6, -3, 7, -5, 8, -11, 9, -6, 10, -8, 11, -9
Dowker-Thistlethwaite code 6 8 12 2 14 18 4 20 22 10 16
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a250 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for K11a250's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 85, 4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant Data:K11a250/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-1, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of K11a250. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-101234567χ
19           1-1
17          2 2
15         41 -3
13        62  4
11       64   -2
9      76    1
7     66     0
5    57      -2
3   47       3
1  14        -3
-1 14         3
-3 1          -1
-51           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a249.gif

K11a249

K11a251.gif

K11a251