K11a250
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X6271 X8493 X12,5,13,6 X2837 X14,10,15,9 X18,11,19,12 X4,13,5,14 X20,16,21,15 X22,18,1,17 X10,19,11,20 X16,22,17,21 |
| Gauss code | 1, -4, 2, -7, 3, -1, 4, -2, 5, -10, 6, -3, 7, -5, 8, -11, 9, -6, 10, -8, 11, -9 |
| Dowker-Thistlethwaite code | 6 8 12 2 14 18 4 20 22 10 16 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8+3 z^6+z^4-z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 85, 4 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^9+3 q^8-6 q^7+10 q^6-12 q^5+13 q^4-13 q^3+11 q^2-8 q+5-2 q^{-1} + q^{-2} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-4} -2 z^6 a^{-2} +6 z^6 a^{-4} -z^6 a^{-6} -10 z^4 a^{-2} +14 z^4 a^{-4} -4 z^4 a^{-6} +z^4-16 z^2 a^{-2} +16 z^2 a^{-4} -5 z^2 a^{-6} +4 z^2-8 a^{-2} +7 a^{-4} -2 a^{-6} +4} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^{10} a^{-2} +z^{10} a^{-4} +2 z^9 a^{-1} +7 z^9 a^{-3} +5 z^9 a^{-5} +2 z^8 a^{-2} +11 z^8 a^{-4} +10 z^8 a^{-6} +z^8-10 z^7 a^{-1} -26 z^7 a^{-3} -4 z^7 a^{-5} +12 z^7 a^{-7} -27 z^6 a^{-2} -54 z^6 a^{-4} -23 z^6 a^{-6} +10 z^6 a^{-8} -6 z^6+16 z^5 a^{-1} +22 z^5 a^{-3} -26 z^5 a^{-5} -26 z^5 a^{-7} +6 z^5 a^{-9} +54 z^4 a^{-2} +68 z^4 a^{-4} +9 z^4 a^{-6} -15 z^4 a^{-8} +3 z^4 a^{-10} +13 z^4-8 z^3 a^{-1} +4 z^3 a^{-3} +31 z^3 a^{-5} +15 z^3 a^{-7} -3 z^3 a^{-9} +z^3 a^{-11} -37 z^2 a^{-2} -33 z^2 a^{-4} -2 z^2 a^{-6} +6 z^2 a^{-8} -12 z^2-5 z a^{-3} -9 z a^{-5} -4 z a^{-7} +8 a^{-2} +7 a^{-4} +2 a^{-6} +4} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^6+q^4+q^2+2-2 q^{-2} -2 q^{-6} -2 q^{-8} +2 q^{-10} -2 q^{-12} +4 q^{-14} + q^{-18} + q^{-20} -2 q^{-22} + q^{-24} - q^{-26} } |
| The G2 invariant | Data:K11a250/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a250"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8+3 z^6+z^4-z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 85, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^9+3 q^8-6 q^7+10 q^6-12 q^5+13 q^4-13 q^3+11 q^2-8 q+5-2 q^{-1} + q^{-2} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-4} -2 z^6 a^{-2} +6 z^6 a^{-4} -z^6 a^{-6} -10 z^4 a^{-2} +14 z^4 a^{-4} -4 z^4 a^{-6} +z^4-16 z^2 a^{-2} +16 z^2 a^{-4} -5 z^2 a^{-6} +4 z^2-8 a^{-2} +7 a^{-4} -2 a^{-6} +4} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^{10} a^{-2} +z^{10} a^{-4} +2 z^9 a^{-1} +7 z^9 a^{-3} +5 z^9 a^{-5} +2 z^8 a^{-2} +11 z^8 a^{-4} +10 z^8 a^{-6} +z^8-10 z^7 a^{-1} -26 z^7 a^{-3} -4 z^7 a^{-5} +12 z^7 a^{-7} -27 z^6 a^{-2} -54 z^6 a^{-4} -23 z^6 a^{-6} +10 z^6 a^{-8} -6 z^6+16 z^5 a^{-1} +22 z^5 a^{-3} -26 z^5 a^{-5} -26 z^5 a^{-7} +6 z^5 a^{-9} +54 z^4 a^{-2} +68 z^4 a^{-4} +9 z^4 a^{-6} -15 z^4 a^{-8} +3 z^4 a^{-10} +13 z^4-8 z^3 a^{-1} +4 z^3 a^{-3} +31 z^3 a^{-5} +15 z^3 a^{-7} -3 z^3 a^{-9} +z^3 a^{-11} -37 z^2 a^{-2} -33 z^2 a^{-4} -2 z^2 a^{-6} +6 z^2 a^{-8} -12 z^2-5 z a^{-3} -9 z a^{-5} -4 z a^{-7} +8 a^{-2} +7 a^{-4} +2 a^{-6} +4} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a250"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^4-5 t^3+11 t^2-16 t+19-16 t^{-1} +11 t^{-2} -5 t^{-3} + t^{-4} } , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (-1, 1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of K11a250. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



