L8a16
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L8a16 is [math]\displaystyle{ 8^3_{5} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L8a16's Link Presentations]
| Planar diagram presentation | X6172 X12,6,13,5 X8493 X2,14,3,13 X14,7,15,8 X16,10,11,9 X10,12,5,11 X4,15,1,16 |
| Gauss code | {1, -4, 3, -8}, {2, -1, 5, -3, 6, -7}, {7, -2, 4, -5, 8, -6} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(2)-1) (t(3)-1) (t(2) t(3)+1)}{\sqrt{t(1)} t(2) t(3)} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^6+3 q^5-4 q^4+6 q^3-5 q^2- q^{-2} +6 q+3 q^{-1} -3 }[/math] (db) |
| Signature | 2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^6 a^{-2} +4 z^4 a^{-2} -z^4 a^{-4} -z^4+4 z^2 a^{-2} -2 z^2 a^{-4} -2 z^2- a^{-2} +1-2 a^{-2} z^{-2} + a^{-4} z^{-2} + z^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ 2 z^7 a^{-1} +2 z^7 a^{-3} +7 z^6 a^{-2} +4 z^6 a^{-4} +3 z^6+a z^5-3 z^5 a^{-1} +4 z^5 a^{-5} -17 z^4 a^{-2} -5 z^4 a^{-4} +3 z^4 a^{-6} -9 z^4-2 a z^3-z^3 a^{-1} -3 z^3 a^{-3} -3 z^3 a^{-5} +z^3 a^{-7} +10 z^2 a^{-2} +2 z^2 a^{-4} -2 z^2 a^{-6} +6 z^2-z a^{-1} -z a^{-3} + a^{-2} + a^{-4} +1+2 a^{-1} z^{-1} +2 a^{-3} z^{-1} -2 a^{-2} z^{-2} - a^{-4} z^{-2} - z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|




