10 143
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 143's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X4251 X10,4,11,3 X5,14,6,15 X7,16,8,17 X15,6,16,7 X17,20,18,1 X11,18,12,19 X19,12,20,13 X13,8,14,9 X2,10,3,9 |
Gauss code | 1, -10, 2, -1, -3, 5, -4, 9, 10, -2, -7, 8, -9, 3, -5, 4, -6, 7, -8, 6 |
Dowker-Thistlethwaite code | 4 10 -14 -16 2 -18 -8 -6 -20 -12 |
Conway Notation | [31,3,21-] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
![]() |
![]() [{3, 8}, {2, 4}, {1, 3}, {13, 9}, {8, 10}, {9, 11}, {10, 12}, {11, 5}, {4, 6}, {5, 7}, {6, 13}, {12, 2}, {7, 1}] |
[edit Notes on presentations of 10 143]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 143"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X10,4,11,3 X5,14,6,15 X7,16,8,17 X15,6,16,7 X17,20,18,1 X11,18,12,19 X19,12,20,13 X13,8,14,9 X2,10,3,9 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -10, 2, -1, -3, 5, -4, 9, 10, -2, -7, 8, -9, 3, -5, 4, -6, 7, -8, 6 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 -14 -16 2 -18 -8 -6 -20 -12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[31,3,21-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(3,\{-1,-1,-1,-1,-2,1,1,1,-2,-2\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
![]() |
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 8}, {2, 4}, {1, 3}, {13, 9}, {8, 10}, {9, 11}, {10, 12}, {11, 5}, {4, 6}, {5, 7}, {6, 13}, {12, 2}, {7, 1}] |
In[14]:=
|
Draw[ap]
|
![]() |
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-3 t^2+6 t-7+6 t^{-1} -3 t^{-2} + t^{-3} } |
Conway polynomial | |
2nd Alexander ideal (db, data sources) | |
Determinant and Signature | { 27, -2 } |
Jones polynomial | |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^6-3 z^2 a^6-2 a^6+z^6 a^4+5 z^4 a^4+8 z^2 a^4+3 a^4-z^4 a^2-2 z^2 a^2} |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^5 a^9-3 z^3 a^9+z a^9+2 z^6 a^8-6 z^4 a^8+3 z^2 a^8+2 z^7 a^7-6 z^5 a^7+5 z^3 a^7-2 z a^7+z^8 a^6-2 z^6 a^6+2 z^4 a^6-3 z^2 a^6+2 a^6+3 z^7 a^5-10 z^5 a^5+14 z^3 a^5-5 z a^5+z^8 a^4-4 z^6 a^4+11 z^4 a^4-10 z^2 a^4+3 a^4+z^7 a^3-3 z^5 a^3+7 z^3 a^3-3 z a^3+3 z^4 a^2-4 z^2 a^2+z^3 a-z a} |
The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{24}-q^{20}+q^{16}-q^{14}+q^{12}+2 q^8+2 q^6+q^2-1} |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{128}-q^{126}+2 q^{124}-3 q^{122}+2 q^{120}-q^{118}-2 q^{116}+7 q^{114}-8 q^{112}+9 q^{110}-7 q^{108}+5 q^{104}-13 q^{102}+15 q^{100}-11 q^{98}+2 q^{96}+6 q^{94}-11 q^{92}+11 q^{90}-6 q^{88}-4 q^{86}+8 q^{84}-13 q^{82}+7 q^{80}+2 q^{78}-12 q^{76}+18 q^{74}-14 q^{72}+8 q^{70}+2 q^{68}-11 q^{66}+14 q^{64}-19 q^{62}+15 q^{60}-3 q^{58}-4 q^{56}+10 q^{54}-14 q^{52}+14 q^{50}-q^{48}-5 q^{46}+5 q^{44}-9 q^{42}+9 q^{40}+8 q^{38}-13 q^{36}+14 q^{34}-7 q^{32}+3 q^{30}+10 q^{28}-16 q^{26}+11 q^{24}-6 q^{22}+5 q^{20}+2 q^{18}-8 q^{16}+7 q^{14}-3 q^{12}+3 q^{10}-q^8-q^6-q^4-q^2+1- q^{-2} + q^{-4} } |
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{93}+q^{91}+q^{89}-q^{87}-2 q^{85}+q^{83}+5 q^{81}-7 q^{77}-3 q^{75}+7 q^{73}+8 q^{71}-5 q^{69}-13 q^{67}+14 q^{63}+7 q^{61}-13 q^{59}-12 q^{57}+10 q^{55}+15 q^{53}-6 q^{51}-15 q^{49}+3 q^{47}+12 q^{45}-q^{43}-10 q^{41}-2 q^{39}+10 q^{37}+4 q^{35}-4 q^{33}-10 q^{31}+q^{29}+11 q^{27}+q^{25}-16 q^{23}-7 q^{21}+15 q^{19}+11 q^{17}-10 q^{15}-12 q^{13}+9 q^{11}+14 q^9+q^7-9 q^5-q^3+4 q+4 q^{-1} -2 q^{-3} -3 q^{-5} - q^{-7} + q^{-11} } |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{225}+q^{223}+q^{221}-q^{219}+q^{211}+2 q^{209}-2 q^{207}-5 q^{205}-2 q^{203}+q^{201}+6 q^{199}+10 q^{197}+6 q^{195}-10 q^{193}-20 q^{191}-14 q^{189}+q^{187}+24 q^{185}+33 q^{183}+18 q^{181}-18 q^{179}-47 q^{177}-45 q^{175}-12 q^{173}+41 q^{171}+77 q^{169}+61 q^{167}-7 q^{165}-82 q^{163}-110 q^{161}-63 q^{159}+45 q^{157}+139 q^{155}+144 q^{153}+33 q^{151}-125 q^{149}-205 q^{147}-136 q^{145}+56 q^{143}+229 q^{141}+231 q^{139}+40 q^{137}-199 q^{135}-287 q^{133}-141 q^{131}+129 q^{129}+300 q^{127}+217 q^{125}-49 q^{123}-268 q^{121}-250 q^{119}-22 q^{117}+209 q^{115}+246 q^{113}+68 q^{111}-149 q^{109}-210 q^{107}-84 q^{105}+93 q^{103}+162 q^{101}+81 q^{99}-56 q^{97}-118 q^{95}-61 q^{93}+32 q^{91}+81 q^{89}+54 q^{87}-14 q^{85}-71 q^{83}-55 q^{81}+3 q^{79}+54 q^{77}+78 q^{75}+28 q^{73}-62 q^{71}-112 q^{69}-65 q^{67}+55 q^{65}+155 q^{63}+129 q^{61}-27 q^{59}-192 q^{57}-201 q^{55}-24 q^{53}+205 q^{51}+268 q^{49}+97 q^{47}-181 q^{45}-316 q^{43}-182 q^{41}+112 q^{39}+311 q^{37}+246 q^{35}-22 q^{33}-259 q^{31}-272 q^{29}-75 q^{27}+167 q^{25}+257 q^{23}+139 q^{21}-60 q^{19}-179 q^{17}-160 q^{15}-24 q^{13}+106 q^{11}+134 q^9+68 q^7-23 q^5-83 q^3-73 q-17 q^{-1} +34 q^{-3} +46 q^{-5} +28 q^{-7} -2 q^{-9} -22 q^{-11} -23 q^{-13} -9 q^{-15} +5 q^{-17} +8 q^{-19} +7 q^{-21} +2 q^{-23} -2 q^{-25} -2 q^{-27} } |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{24}-q^{20}+q^{16}-q^{14}+q^{12}+2 q^8+2 q^6+q^2-1} |
1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{68}-2 q^{66}+4 q^{64}-8 q^{62}+15 q^{60}-20 q^{58}+26 q^{56}-34 q^{54}+37 q^{52}-34 q^{50}+24 q^{48}-14 q^{46}-5 q^{44}+24 q^{42}-42 q^{40}+58 q^{38}-61 q^{36}+66 q^{34}-62 q^{32}+50 q^{30}-42 q^{28}+18 q^{26}-6 q^{24}-14 q^{22}+24 q^{20}-32 q^{18}+42 q^{16}-28 q^{14}+30 q^{12}-14 q^{10}+16 q^8-6 q^6+2 q^4-4 q^2-2 q^{-2} + q^{-4} } |
2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{62}+q^{56}+q^{54}-q^{52}-2 q^{50}-q^{48}-3 q^{44}-2 q^{42}+2 q^{40}+q^{38}+q^{36}+2 q^{34}+3 q^{32}-3 q^{28}-3 q^{26}-4 q^{24}-5 q^{22}+q^{20}+4 q^{18}+3 q^{16}+4 q^{14}+6 q^{12}+3 q^{10}-q^6+q^4-q^2-2} |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{54}-q^{52}+q^{48}-2 q^{46}+2 q^{44}+2 q^{42}-3 q^{40}+2 q^{38}-6 q^{34}-2 q^{32}-q^{30}-3 q^{28}+2 q^{24}+3 q^{22}+2 q^{20}+q^{18}+6 q^{16}+5 q^{10}-q^8-3 q^6+2 q^4-q^2-1+ q^{-2} } |
1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{31}-2 q^{27}-q^{23}+q^{21}+q^{17}+q^{15}+q^{13}+2 q^{11}+q^9+2 q^7-q^5+q^3-q} |
1,0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{88}-2 q^{86}+3 q^{84}-3 q^{82}+q^{80}+6 q^{78}-11 q^{76}+13 q^{74}-10 q^{72}+13 q^{68}-21 q^{66}+26 q^{64}-25 q^{62}+8 q^{60}+4 q^{58}-25 q^{56}+31 q^{54}-23 q^{52}+23 q^{50}-4 q^{48}+9 q^{46}-7 q^{44}-5 q^{42}-4 q^{40}-25 q^{38}+20 q^{36}-38 q^{34}+34 q^{32}-20 q^{30}+4 q^{28}+22 q^{26}-24 q^{24}+32 q^{22}-9 q^{20}+12 q^{18}+11 q^{16}+q^{14}+7 q^{12}+q^{10}-6 q^8-q^6-2 q^4-4 q^2+3-2 q^{-2} + q^{-4} } |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{68}+q^{62}-q^{60}-q^{58}+3 q^{56}+2 q^{54}-q^{52}+2 q^{50}+2 q^{48}-4 q^{46}-9 q^{44}-6 q^{42}-6 q^{40}-10 q^{38}-3 q^{36}+5 q^{34}+3 q^{32}+5 q^{30}+12 q^{28}+7 q^{26}+3 q^{24}+5 q^{22}+4 q^{20}-q^{18}-3 q^{16}+2 q^{14}-3 q^{10}-q^8+2 q^6-q^4+1} |
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{38}-2 q^{34}-q^{32}-q^{30}-q^{28}+q^{26}+2 q^{22}+q^{20}+2 q^{18}+q^{16}+2 q^{14}+q^{12}+q^{10}+q^8-q^6+q^4-q^2} |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{54}+q^{52}-2 q^{50}+3 q^{48}-4 q^{46}+4 q^{44}-4 q^{42}+3 q^{40}-2 q^{38}+2 q^{34}-4 q^{32}+5 q^{30}-7 q^{28}+8 q^{26}-8 q^{24}+7 q^{22}-4 q^{20}+3 q^{18}+4 q^{12}-3 q^{10}+5 q^8-3 q^6+4 q^4-3 q^2+1- q^{-2} } |
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{88}-q^{84}-q^{82}+q^{80}+2 q^{78}-q^{76}-3 q^{74}+4 q^{70}+3 q^{68}-3 q^{66}-4 q^{64}+q^{62}+4 q^{60}-5 q^{56}-3 q^{54}+q^{52}+q^{50}-2 q^{48}-3 q^{46}+q^{44}+3 q^{42}-3 q^{38}+4 q^{34}+2 q^{32}-2 q^{30}-2 q^{28}+4 q^{26}+4 q^{24}-3 q^{20}+2 q^{18}+5 q^{16}+3 q^{14}-3 q^{12}-3 q^{10}+3 q^6-2 q^2-1+ q^{-4} } |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{74}-q^{72}+q^{70}-2 q^{68}+3 q^{66}-3 q^{64}+3 q^{62}-3 q^{60}+4 q^{58}-2 q^{56}+2 q^{54}-q^{52}-q^{50}-q^{48}-6 q^{46}-7 q^{42}+2 q^{40}-8 q^{38}+6 q^{36}-4 q^{34}+9 q^{32}-q^{30}+7 q^{28}+q^{26}+5 q^{24}+3 q^{22}+2 q^{18}-2 q^{16}+4 q^{14}-3 q^{12}+2 q^{10}-4 q^8+3 q^6-2 q^4+q^2-1+ q^{-2} } |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{128}-q^{126}+2 q^{124}-3 q^{122}+2 q^{120}-q^{118}-2 q^{116}+7 q^{114}-8 q^{112}+9 q^{110}-7 q^{108}+5 q^{104}-13 q^{102}+15 q^{100}-11 q^{98}+2 q^{96}+6 q^{94}-11 q^{92}+11 q^{90}-6 q^{88}-4 q^{86}+8 q^{84}-13 q^{82}+7 q^{80}+2 q^{78}-12 q^{76}+18 q^{74}-14 q^{72}+8 q^{70}+2 q^{68}-11 q^{66}+14 q^{64}-19 q^{62}+15 q^{60}-3 q^{58}-4 q^{56}+10 q^{54}-14 q^{52}+14 q^{50}-q^{48}-5 q^{46}+5 q^{44}-9 q^{42}+9 q^{40}+8 q^{38}-13 q^{36}+14 q^{34}-7 q^{32}+3 q^{30}+10 q^{28}-16 q^{26}+11 q^{24}-6 q^{22}+5 q^{20}+2 q^{18}-8 q^{16}+7 q^{14}-3 q^{12}+3 q^{10}-q^8-q^6-q^4-q^2+1- q^{-2} + q^{-4} } |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 143"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-3 t^2+6 t-7+6 t^{-1} -3 t^{-2} + t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 27, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^6-3 z^2 a^6-2 a^6+z^6 a^4+5 z^4 a^4+8 z^2 a^4+3 a^4-z^4 a^2-2 z^2 a^2} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^5 a^9-3 z^3 a^9+z a^9+2 z^6 a^8-6 z^4 a^8+3 z^2 a^8+2 z^7 a^7-6 z^5 a^7+5 z^3 a^7-2 z a^7+z^8 a^6-2 z^6 a^6+2 z^4 a^6-3 z^2 a^6+2 a^6+3 z^7 a^5-10 z^5 a^5+14 z^3 a^5-5 z a^5+z^8 a^4-4 z^6 a^4+11 z^4 a^4-10 z^2 a^4+3 a^4+z^7 a^3-3 z^5 a^3+7 z^3 a^3-3 z a^3+3 z^4 a^2-4 z^2 a^2+z^3 a-z a} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {8_10, K11n106,}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 143"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-3 t^2+6 t-7+6 t^{-1} -3 t^{-2} + t^{-3} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1+3 q^{-1} -3 q^{-2} +5 q^{-3} -5 q^{-4} +4 q^{-5} -3 q^{-6} +2 q^{-7} - q^{-8} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{8_10, K11n106,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (3, -5) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 10 143. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2+2 q^{-1} +4 q^{-2} -8 q^{-3} +4 q^{-4} +11 q^{-5} -16 q^{-6} +2 q^{-7} +18 q^{-8} -21 q^{-9} - q^{-10} +21 q^{-11} -17 q^{-12} -4 q^{-13} +18 q^{-14} -10 q^{-15} -7 q^{-16} +12 q^{-17} -3 q^{-18} -6 q^{-19} +5 q^{-20} -2 q^{-22} + q^{-23} } |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^4-q^3-q^2-2 q+2+5 q^{-1} - q^{-2} -7 q^{-3} -6 q^{-4} +15 q^{-5} +12 q^{-6} -12 q^{-7} -27 q^{-8} +17 q^{-9} +33 q^{-10} -8 q^{-11} -49 q^{-12} +8 q^{-13} +50 q^{-14} +2 q^{-15} -59 q^{-16} -3 q^{-17} +56 q^{-18} +10 q^{-19} -53 q^{-20} -15 q^{-21} +48 q^{-22} +19 q^{-23} -40 q^{-24} -24 q^{-25} +30 q^{-26} +28 q^{-27} -19 q^{-28} -29 q^{-29} +8 q^{-30} +27 q^{-31} + q^{-32} -22 q^{-33} -6 q^{-34} +14 q^{-35} +9 q^{-36} -9 q^{-37} -7 q^{-38} +4 q^{-39} +5 q^{-40} -2 q^{-41} -2 q^{-42} +2 q^{-44} - q^{-45} } |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^8+q^7+3 q^6-2 q^4-8 q^3-4 q^2+11 q+10+10 q^{-1} -18 q^{-2} -32 q^{-3} +5 q^{-4} +20 q^{-5} +52 q^{-6} +3 q^{-7} -67 q^{-8} -39 q^{-9} -8 q^{-10} +103 q^{-11} +71 q^{-12} -70 q^{-13} -95 q^{-14} -82 q^{-15} +125 q^{-16} +149 q^{-17} -36 q^{-18} -123 q^{-19} -159 q^{-20} +115 q^{-21} +197 q^{-22} +3 q^{-23} -116 q^{-24} -208 q^{-25} +95 q^{-26} +211 q^{-27} +24 q^{-28} -95 q^{-29} -222 q^{-30} +72 q^{-31} +194 q^{-32} +39 q^{-33} -60 q^{-34} -213 q^{-35} +34 q^{-36} +156 q^{-37} +58 q^{-38} -8 q^{-39} -181 q^{-40} -15 q^{-41} +89 q^{-42} +63 q^{-43} +54 q^{-44} -119 q^{-45} -45 q^{-46} +12 q^{-47} +35 q^{-48} +87 q^{-49} -45 q^{-50} -33 q^{-51} -33 q^{-52} -8 q^{-53} +69 q^{-54} - q^{-55} -28 q^{-57} -28 q^{-58} +31 q^{-59} +5 q^{-60} +13 q^{-61} -9 q^{-62} -19 q^{-63} +10 q^{-64} - q^{-65} +7 q^{-66} -7 q^{-68} +3 q^{-69} - q^{-70} +2 q^{-71} -2 q^{-73} + q^{-74} } |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 q^{11}+4 q^9+5 q^8+q^7-3 q^6-16 q^5-14 q^4+5 q^3+25 q^2+31 q+15-28 q^{-1} -65 q^{-2} -51 q^{-3} +15 q^{-4} +91 q^{-5} +106 q^{-6} +38 q^{-7} -93 q^{-8} -181 q^{-9} -121 q^{-10} +72 q^{-11} +225 q^{-12} +237 q^{-13} +25 q^{-14} -271 q^{-15} -363 q^{-16} -125 q^{-17} +238 q^{-18} +474 q^{-19} +293 q^{-20} -206 q^{-21} -562 q^{-22} -419 q^{-23} +104 q^{-24} +609 q^{-25} +571 q^{-26} -35 q^{-27} -625 q^{-28} -648 q^{-29} -73 q^{-30} +618 q^{-31} +736 q^{-32} +121 q^{-33} -599 q^{-34} -748 q^{-35} -193 q^{-36} +571 q^{-37} +786 q^{-38} +211 q^{-39} -549 q^{-40} -772 q^{-41} -244 q^{-42} +513 q^{-43} +770 q^{-44} +268 q^{-45} -481 q^{-46} -745 q^{-47} -293 q^{-48} +420 q^{-49} +713 q^{-50} +330 q^{-51} -344 q^{-52} -664 q^{-53} -362 q^{-54} +243 q^{-55} +587 q^{-56} +391 q^{-57} -127 q^{-58} -486 q^{-59} -399 q^{-60} +12 q^{-61} +359 q^{-62} +373 q^{-63} +92 q^{-64} -220 q^{-65} -316 q^{-66} -159 q^{-67} +89 q^{-68} +227 q^{-69} +180 q^{-70} +19 q^{-71} -125 q^{-72} -161 q^{-73} -84 q^{-74} +35 q^{-75} +111 q^{-76} +99 q^{-77} +33 q^{-78} -50 q^{-79} -89 q^{-80} -59 q^{-81} +3 q^{-82} +52 q^{-83} +61 q^{-84} +25 q^{-85} -21 q^{-86} -43 q^{-87} -33 q^{-88} - q^{-89} +28 q^{-90} +23 q^{-91} +8 q^{-92} -7 q^{-93} -18 q^{-94} -10 q^{-95} +5 q^{-96} +8 q^{-97} +2 q^{-98} +3 q^{-99} -2 q^{-100} -6 q^{-101} + q^{-102} +3 q^{-103} - q^{-104} + q^{-106} -2 q^{-107} +2 q^{-109} - q^{-110} } |
6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{20}-q^{19}-q^{18}-q^{15}-3 q^{14}+7 q^{13}+5 q^{12}+4 q^{11}+4 q^{10}-4 q^9-18 q^8-33 q^7-6 q^6+15 q^5+36 q^4+59 q^3+50 q^2-15 q-107-112 q^{-1} -82 q^{-2} -3 q^{-3} +144 q^{-4} +254 q^{-5} +196 q^{-6} -41 q^{-7} -230 q^{-8} -366 q^{-9} -356 q^{-10} -31 q^{-11} +419 q^{-12} +653 q^{-13} +447 q^{-14} +29 q^{-15} -539 q^{-16} -989 q^{-17} -737 q^{-18} +86 q^{-19} +950 q^{-20} +1223 q^{-21} +885 q^{-22} -138 q^{-23} -1415 q^{-24} -1719 q^{-25} -862 q^{-26} +660 q^{-27} +1756 q^{-28} +1972 q^{-29} +820 q^{-30} -1277 q^{-31} -2417 q^{-32} -1957 q^{-33} -92 q^{-34} +1760 q^{-35} +2741 q^{-36} +1817 q^{-37} -762 q^{-38} -2614 q^{-39} -2691 q^{-40} -811 q^{-41} +1440 q^{-42} +3028 q^{-43} +2439 q^{-44} -286 q^{-45} -2512 q^{-46} -2979 q^{-47} -1211 q^{-48} +1127 q^{-49} +3030 q^{-50} +2685 q^{-51} -21 q^{-52} -2365 q^{-53} -3025 q^{-54} -1361 q^{-55} +927 q^{-56} +2952 q^{-57} +2749 q^{-58} +139 q^{-59} -2220 q^{-60} -2991 q^{-61} -1457 q^{-62} +718 q^{-63} +2805 q^{-64} +2765 q^{-65} +380 q^{-66} -1936 q^{-67} -2874 q^{-68} -1619 q^{-69} +323 q^{-70} +2445 q^{-71} +2712 q^{-72} +792 q^{-73} -1347 q^{-74} -2518 q^{-75} -1786 q^{-76} -317 q^{-77} +1729 q^{-78} +2413 q^{-79} +1239 q^{-80} -466 q^{-81} -1774 q^{-82} -1699 q^{-83} -971 q^{-84} +719 q^{-85} +1691 q^{-86} +1368 q^{-87} +374 q^{-88} -741 q^{-89} -1140 q^{-90} -1207 q^{-91} -177 q^{-92} +689 q^{-93} +949 q^{-94} +700 q^{-95} +113 q^{-96} -309 q^{-97} -838 q^{-98} -494 q^{-99} -77 q^{-100} +266 q^{-101} +418 q^{-102} +366 q^{-103} +251 q^{-104} -249 q^{-105} -256 q^{-106} -258 q^{-107} -134 q^{-108} -7 q^{-109} +152 q^{-110} +295 q^{-111} +53 q^{-112} +43 q^{-113} -84 q^{-114} -122 q^{-115} -154 q^{-116} -55 q^{-117} +112 q^{-118} +40 q^{-119} +103 q^{-120} +41 q^{-121} +3 q^{-122} -89 q^{-123} -74 q^{-124} +13 q^{-125} -22 q^{-126} +41 q^{-127} +34 q^{-128} +40 q^{-129} -22 q^{-130} -30 q^{-131} +6 q^{-132} -25 q^{-133} +3 q^{-134} +6 q^{-135} +22 q^{-136} -4 q^{-137} -8 q^{-138} +9 q^{-139} -9 q^{-140} -2 q^{-141} -2 q^{-142} +8 q^{-143} -2 q^{-144} -4 q^{-145} +5 q^{-146} -2 q^{-147} - q^{-149} +2 q^{-150} -2 q^{-152} + q^{-153} } |
7 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{NotAvailable}(q)} |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|