K11a34

From Knot Atlas
Revision as of 02:48, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

K11a33.gif

K11a33

K11a35.gif

K11a35

K11a34.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a34 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X14,5,15,6 X2837 X16,9,17,10 X18,12,19,11 X20,14,21,13 X6,15,7,16 X22,17,1,18 X12,20,13,19 X10,22,11,21
Gauss code 1, -4, 2, -1, 3, -8, 4, -2, 5, -11, 6, -10, 7, -3, 8, -5, 9, -6, 10, -7, 11, -9
Dowker-Thistlethwaite code 4 8 14 2 16 18 20 6 22 12 10
A Braid Representative
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11a34 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for K11a34's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 119, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{46}-2 q^{44}+5 q^{42}-9 q^{40}+11 q^{38}-12 q^{36}+5 q^{34}+12 q^{32}-34 q^{30}+62 q^{28}-83 q^{26}+79 q^{24}-44 q^{22}-30 q^{20}+134 q^{18}-222 q^{16}+269 q^{14}-226 q^{12}+92 q^{10}+111 q^8-317 q^6+451 q^4-442 q^2+284-18 q^{-2} -260 q^{-4} +446 q^{-6} -463 q^{-8} +316 q^{-10} -56 q^{-12} -204 q^{-14} +343 q^{-16} -319 q^{-18} +124 q^{-20} +141 q^{-22} -360 q^{-24} +430 q^{-26} -308 q^{-28} +18 q^{-30} +321 q^{-32} -592 q^{-34} +670 q^{-36} -522 q^{-38} +179 q^{-40} +230 q^{-42} -564 q^{-44} +705 q^{-46} -601 q^{-48} +312 q^{-50} +52 q^{-52} -347 q^{-54} +467 q^{-56} -377 q^{-58} +147 q^{-60} +125 q^{-62} -297 q^{-64} +311 q^{-66} -157 q^{-68} -85 q^{-70} +313 q^{-72} -425 q^{-74} +382 q^{-76} -198 q^{-78} -62 q^{-80} +292 q^{-82} -425 q^{-84} +423 q^{-86} -298 q^{-88} +108 q^{-90} +81 q^{-92} -221 q^{-94} +271 q^{-96} -242 q^{-98} +159 q^{-100} -55 q^{-102} -32 q^{-104} +82 q^{-106} -98 q^{-108} +82 q^{-110} -49 q^{-112} +21 q^{-114} +3 q^{-116} -14 q^{-118} +15 q^{-120} -13 q^{-122} +7 q^{-124} -3 q^{-126} + q^{-128} }

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a158,}

Same Jones Polynomial (up to mirroring, ): {K11a89,}

Vassiliev invariants

V2 and V3: (-2, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of K11a34. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-101234567χ
17           1-1
15          3 3
13         51 -4
11        83  5
9       95   -4
7      108    2
5     99     0
3    710      -3
1   510       5
-1  26        -4
-3 15         4
-5 2          -2
-71           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a33.gif

K11a33

K11a35.gif

K11a35