K11a34
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X8493 X14,5,15,6 X2837 X16,9,17,10 X18,12,19,11 X20,14,21,13 X6,15,7,16 X22,17,1,18 X12,20,13,19 X10,22,11,21 |
| Gauss code | 1, -4, 2, -1, 3, -8, 4, -2, 5, -11, 6, -10, 7, -3, 8, -5, 9, -6, 10, -7, 11, -9 |
| Dowker-Thistlethwaite code | 4 8 14 2 16 18 20 6 22 12 10 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^4+5 t^3-14 t^2+25 t-29+25 t^{-1} -14 t^{-2} +5 t^{-3} - t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^8-3 z^6-4 z^4-2 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 119, 2 } |
| Jones polynomial | [math]\displaystyle{ -q^8+4 q^7-8 q^6+13 q^5-17 q^4+19 q^3-19 q^2+16 q-11+7 q^{-1} -3 q^{-2} + q^{-3} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^8 a^{-2} -6 z^6 a^{-2} +2 z^6 a^{-4} +z^6-15 z^4 a^{-2} +8 z^4 a^{-4} -z^4 a^{-6} +4 z^4-17 z^2 a^{-2} +11 z^2 a^{-4} -2 z^2 a^{-6} +6 z^2-7 a^{-2} +5 a^{-4} - a^{-6} +4 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^{10} a^{-2} +z^{10} a^{-4} +4 z^9 a^{-1} +8 z^9 a^{-3} +4 z^9 a^{-5} +12 z^8 a^{-2} +14 z^8 a^{-4} +7 z^8 a^{-6} +5 z^8+3 a z^7-5 z^7 a^{-1} -9 z^7 a^{-3} +6 z^7 a^{-5} +7 z^7 a^{-7} +a^2 z^6-41 z^6 a^{-2} -37 z^6 a^{-4} -7 z^6 a^{-6} +4 z^6 a^{-8} -14 z^6-8 a z^5-4 z^5 a^{-1} -9 z^5 a^{-3} -25 z^5 a^{-5} -11 z^5 a^{-7} +z^5 a^{-9} -3 a^2 z^4+53 z^4 a^{-2} +39 z^4 a^{-4} -2 z^4 a^{-6} -6 z^4 a^{-8} +15 z^4+5 a z^3+7 z^3 a^{-1} +19 z^3 a^{-3} +23 z^3 a^{-5} +5 z^3 a^{-7} -z^3 a^{-9} +2 a^2 z^2-32 z^2 a^{-2} -20 z^2 a^{-4} +z^2 a^{-6} +2 z^2 a^{-8} -11 z^2-a z-3 z a^{-1} -7 z a^{-3} -7 z a^{-5} -2 z a^{-7} +7 a^{-2} +5 a^{-4} + a^{-6} +4 }[/math] |
| The A2 invariant | [math]\displaystyle{ q^8-q^6+3 q^4+3 q^{-2} -5 q^{-4} +2 q^{-6} -3 q^{-8} +2 q^{-12} -2 q^{-14} +4 q^{-16} - q^{-18} + q^{-22} - q^{-24} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{46}-2 q^{44}+5 q^{42}-9 q^{40}+11 q^{38}-12 q^{36}+5 q^{34}+12 q^{32}-34 q^{30}+62 q^{28}-83 q^{26}+79 q^{24}-44 q^{22}-30 q^{20}+134 q^{18}-222 q^{16}+269 q^{14}-226 q^{12}+92 q^{10}+111 q^8-317 q^6+451 q^4-442 q^2+284-18 q^{-2} -260 q^{-4} +446 q^{-6} -463 q^{-8} +316 q^{-10} -56 q^{-12} -204 q^{-14} +343 q^{-16} -319 q^{-18} +124 q^{-20} +141 q^{-22} -360 q^{-24} +430 q^{-26} -308 q^{-28} +18 q^{-30} +321 q^{-32} -592 q^{-34} +670 q^{-36} -522 q^{-38} +179 q^{-40} +230 q^{-42} -564 q^{-44} +705 q^{-46} -601 q^{-48} +312 q^{-50} +52 q^{-52} -347 q^{-54} +467 q^{-56} -377 q^{-58} +147 q^{-60} +125 q^{-62} -297 q^{-64} +311 q^{-66} -157 q^{-68} -85 q^{-70} +313 q^{-72} -425 q^{-74} +382 q^{-76} -198 q^{-78} -62 q^{-80} +292 q^{-82} -425 q^{-84} +423 q^{-86} -298 q^{-88} +108 q^{-90} +81 q^{-92} -221 q^{-94} +271 q^{-96} -242 q^{-98} +159 q^{-100} -55 q^{-102} -32 q^{-104} +82 q^{-106} -98 q^{-108} +82 q^{-110} -49 q^{-112} +21 q^{-114} +3 q^{-116} -14 q^{-118} +15 q^{-120} -13 q^{-122} +7 q^{-124} -3 q^{-126} + q^{-128} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a34"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^4+5 t^3-14 t^2+25 t-29+25 t^{-1} -14 t^{-2} +5 t^{-3} - t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^8-3 z^6-4 z^4-2 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 119, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^8+4 q^7-8 q^6+13 q^5-17 q^4+19 q^3-19 q^2+16 q-11+7 q^{-1} -3 q^{-2} + q^{-3} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^8 a^{-2} -6 z^6 a^{-2} +2 z^6 a^{-4} +z^6-15 z^4 a^{-2} +8 z^4 a^{-4} -z^4 a^{-6} +4 z^4-17 z^2 a^{-2} +11 z^2 a^{-4} -2 z^2 a^{-6} +6 z^2-7 a^{-2} +5 a^{-4} - a^{-6} +4 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^{10} a^{-2} +z^{10} a^{-4} +4 z^9 a^{-1} +8 z^9 a^{-3} +4 z^9 a^{-5} +12 z^8 a^{-2} +14 z^8 a^{-4} +7 z^8 a^{-6} +5 z^8+3 a z^7-5 z^7 a^{-1} -9 z^7 a^{-3} +6 z^7 a^{-5} +7 z^7 a^{-7} +a^2 z^6-41 z^6 a^{-2} -37 z^6 a^{-4} -7 z^6 a^{-6} +4 z^6 a^{-8} -14 z^6-8 a z^5-4 z^5 a^{-1} -9 z^5 a^{-3} -25 z^5 a^{-5} -11 z^5 a^{-7} +z^5 a^{-9} -3 a^2 z^4+53 z^4 a^{-2} +39 z^4 a^{-4} -2 z^4 a^{-6} -6 z^4 a^{-8} +15 z^4+5 a z^3+7 z^3 a^{-1} +19 z^3 a^{-3} +23 z^3 a^{-5} +5 z^3 a^{-7} -z^3 a^{-9} +2 a^2 z^2-32 z^2 a^{-2} -20 z^2 a^{-4} +z^2 a^{-6} +2 z^2 a^{-8} -11 z^2-a z-3 z a^{-1} -7 z a^{-3} -7 z a^{-5} -2 z a^{-7} +7 a^{-2} +5 a^{-4} + a^{-6} +4 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a158,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a89,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a34"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -t^4+5 t^3-14 t^2+25 t-29+25 t^{-1} -14 t^{-2} +5 t^{-3} - t^{-4} }[/math], [math]\displaystyle{ -q^8+4 q^7-8 q^6+13 q^5-17 q^4+19 q^3-19 q^2+16 q-11+7 q^{-1} -3 q^{-2} + q^{-3} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a158,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11a89,} |
Vassiliev invariants
| V2 and V3: | (-2, -1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11a34. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



