K11a47

From Knot Atlas
Revision as of 01:43, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

K11a46.gif

K11a46

K11a48.gif

K11a48

K11a47.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a47 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X14,5,15,6 X2837 X20,9,21,10 X22,11,1,12 X18,14,19,13 X6,15,7,16 X12,18,13,17 X16,20,17,19 X10,21,11,22
Gauss code 1, -4, 2, -1, 3, -8, 4, -2, 5, -11, 6, -9, 7, -3, 8, -10, 9, -7, 10, -5, 11, -6
Dowker-Thistlethwaite code 4 8 14 2 20 22 18 6 12 16 10
A Braid Representative
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation K11a47 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number
3-genus 4
Bridge index 4
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a47/ThurstonBennequinNumber
Hyperbolic Volume 15.5977
A-Polynomial See Data:K11a47/A-polynomial

[edit Notes for K11a47's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for K11a47's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 117, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a44, K11a109,}

Same Jones Polynomial (up to mirroring, ): {K11a44,}

Vassiliev invariants

V2 and V3: (3, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of K11a47. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-10123456χ
13           11
11          2 -2
9         41 3
7        82  -6
5       84   4
3      108    -2
1     108     2
-1    711      4
-3   69       -3
-5  27        5
-7 16         -5
-9 2          2
-111           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a46.gif

K11a46

K11a48.gif

K11a48