L9a30

From Knot Atlas
Revision as of 02:53, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L9a29.gif

L9a29

L9a31.gif

L9a31

L9a30.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9a30 at Knotilus!

L9a30 is [math]\displaystyle{ 9^2_{3} }[/math] in the Rolfsen table of links.


Link Presentations

[edit Notes on L9a30's Link Presentations]

Planar diagram presentation X8192 X2,9,3,10 X10,3,11,4 X6718 X16,13,17,14 X14,6,15,5 X4,16,5,15 X18,11,7,12 X12,17,13,18
Gauss code {1, -2, 3, -7, 6, -4}, {4, -1, 2, -3, 8, -9, 5, -6, 7, -5, 9, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L9a30 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ \frac{2 u^2 v^2-2 u^2 v-2 u v^2+3 u v-2 u-2 v+2}{u v} }[/math] (db)
Jones polynomial [math]\displaystyle{ -\sqrt{q}+\frac{1}{\sqrt{q}}-\frac{3}{q^{3/2}}+\frac{4}{q^{5/2}}-\frac{5}{q^{7/2}}+\frac{5}{q^{9/2}}-\frac{5}{q^{11/2}}+\frac{3}{q^{13/2}}-\frac{2}{q^{15/2}}+\frac{1}{q^{17/2}} }[/math] (db)
Signature -3 (db)
HOMFLY-PT polynomial [math]\displaystyle{ a^7 \left(-z^3\right)-2 a^7 z+a^5 z^5+3 a^5 z^3+2 a^5 z+a^3 z^5+3 a^3 z^3+2 a^3 z+a^3 z^{-1} -a z^3-3 a z-a z^{-1} }[/math] (db)
Kauffman polynomial [math]\displaystyle{ a^{10} z^4-2 a^{10} z^2+2 a^9 z^5-4 a^9 z^3+a^9 z+2 a^8 z^6-3 a^8 z^4+a^8 z^2+2 a^7 z^7-5 a^7 z^5+7 a^7 z^3-2 a^7 z+a^6 z^8-2 a^6 z^6+4 a^6 z^4-a^6 z^2+3 a^5 z^7-9 a^5 z^5+12 a^5 z^3-4 a^5 z+a^4 z^8-3 a^4 z^6+6 a^4 z^4-5 a^4 z^2+a^3 z^7-a^3 z^5-3 a^3 z^3+3 a^3 z-a^3 z^{-1} +a^2 z^6-2 a^2 z^4-a^2 z^2+a^2+a z^5-4 a z^3+4 a z-a z^{-1} }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
2         11
0          0
-2       31 2
-4      21  -1
-6     32   1
-8    33    0
-10   22     0
-12  13      2
-14 12       -1
-16 1        1
-181         -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-4 }[/math] [math]\displaystyle{ i=-2 }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9a29.gif

L9a29

L9a31.gif

L9a31