L9a30
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a30 is [math]\displaystyle{ 9^2_{3} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a30's Link Presentations]
| Planar diagram presentation | X8192 X2,9,3,10 X10,3,11,4 X6718 X16,13,17,14 X14,6,15,5 X4,16,5,15 X18,11,7,12 X12,17,13,18 |
| Gauss code | {1, -2, 3, -7, 6, -4}, {4, -1, 2, -3, 8, -9, 5, -6, 7, -5, 9, -8} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{2 u^2 v^2-2 u^2 v-2 u v^2+3 u v-2 u-2 v+2}{u v} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\sqrt{q}+\frac{1}{\sqrt{q}}-\frac{3}{q^{3/2}}+\frac{4}{q^{5/2}}-\frac{5}{q^{7/2}}+\frac{5}{q^{9/2}}-\frac{5}{q^{11/2}}+\frac{3}{q^{13/2}}-\frac{2}{q^{15/2}}+\frac{1}{q^{17/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^7 \left(-z^3\right)-2 a^7 z+a^5 z^5+3 a^5 z^3+2 a^5 z+a^3 z^5+3 a^3 z^3+2 a^3 z+a^3 z^{-1} -a z^3-3 a z-a z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{10} z^4-2 a^{10} z^2+2 a^9 z^5-4 a^9 z^3+a^9 z+2 a^8 z^6-3 a^8 z^4+a^8 z^2+2 a^7 z^7-5 a^7 z^5+7 a^7 z^3-2 a^7 z+a^6 z^8-2 a^6 z^6+4 a^6 z^4-a^6 z^2+3 a^5 z^7-9 a^5 z^5+12 a^5 z^3-4 a^5 z+a^4 z^8-3 a^4 z^6+6 a^4 z^4-5 a^4 z^2+a^3 z^7-a^3 z^5-3 a^3 z^3+3 a^3 z-a^3 z^{-1} +a^2 z^6-2 a^2 z^4-a^2 z^2+a^2+a z^5-4 a z^3+4 a z-a z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



