K11n63

From Knot Atlas
Revision as of 01:45, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

K11n62.gif

K11n62

K11n64.gif

K11n64

K11n63.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n63 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X5,15,6,14 X2837 X16,9,17,10 X20,12,21,11 X18,14,19,13 X15,7,16,6 X22,17,1,18 X12,20,13,19 X10,22,11,21
Gauss code 1, -4, 2, -1, -3, 8, 4, -2, 5, -11, 6, -10, 7, 3, -8, -5, 9, -7, 10, -6, 11, -9
Dowker-Thistlethwaite code 4 8 -14 2 16 20 18 -6 22 12 10
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11n63 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 2 }[/math]
Rasmussen s-Invariant -2

[edit Notes for K11n63's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -2 t^2+10 t-15+10 t^{-1} -2 t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ -2 z^4+2 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 39, 2 }
Jones polynomial [math]\displaystyle{ -q^{10}+2 q^9-3 q^8+5 q^7-6 q^6+6 q^5-6 q^4+5 q^3-3 q^2+2 q }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^4 a^{-4} -z^4 a^{-6} +2 z^2 a^{-2} -z^2 a^{-4} -z^2 a^{-6} +2 z^2 a^{-8} +2 a^{-2} - a^{-4} - a^{-6} +2 a^{-8} - a^{-10} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^9 a^{-7} +z^9 a^{-9} +2 z^8 a^{-6} +4 z^8 a^{-8} +2 z^8 a^{-10} +2 z^7 a^{-5} -z^7 a^{-7} -2 z^7 a^{-9} +z^7 a^{-11} +2 z^6 a^{-4} -4 z^6 a^{-6} -16 z^6 a^{-8} -10 z^6 a^{-10} +z^5 a^{-3} -z^5 a^{-5} -z^5 a^{-7} -4 z^5 a^{-9} -5 z^5 a^{-11} -2 z^4 a^{-4} +3 z^4 a^{-6} +20 z^4 a^{-8} +15 z^4 a^{-10} +z^3 a^{-3} -4 z^3 a^{-5} -5 z^3 a^{-7} +7 z^3 a^{-9} +7 z^3 a^{-11} +3 z^2 a^{-2} +3 z^2 a^{-4} -5 z^2 a^{-6} -12 z^2 a^{-8} -7 z^2 a^{-10} +z a^{-3} +3 z a^{-5} +3 z a^{-7} -z a^{-9} -2 z a^{-11} -2 a^{-2} - a^{-4} + a^{-6} +2 a^{-8} + a^{-10} }[/math]
The A2 invariant Data:K11n63/QuantumInvariant/A2/1,0
The G2 invariant Data:K11n63/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {9_15, 10_165, K11n101,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (2, 5)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 8 }[/math] [math]\displaystyle{ 40 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{604}{3} }[/math] [math]\displaystyle{ \frac{92}{3} }[/math] [math]\displaystyle{ 320 }[/math] [math]\displaystyle{ \frac{2992}{3} }[/math] [math]\displaystyle{ \frac{448}{3} }[/math] [math]\displaystyle{ 168 }[/math] [math]\displaystyle{ \frac{256}{3} }[/math] [math]\displaystyle{ 800 }[/math] [math]\displaystyle{ \frac{4832}{3} }[/math] [math]\displaystyle{ \frac{736}{3} }[/math] [math]\displaystyle{ \frac{75151}{15} }[/math] [math]\displaystyle{ -\frac{3044}{15} }[/math] [math]\displaystyle{ \frac{103684}{45} }[/math] [math]\displaystyle{ \frac{881}{9} }[/math] [math]\displaystyle{ \frac{4351}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11n63. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
0123456789χ
21         1-1
19        1 1
17       21 -1
15      31  2
13     32   -1
11    33    0
9   33     0
7  23      -1
5 13       2
312        -1
12         2
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=1 }[/math] [math]\displaystyle{ i=3 }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=9 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n62.gif

K11n62

K11n64.gif

K11n64