[[Image:T(7,3).{{{ext}}}|80px|link=T(7,3)]]
T(7,3)
|
[[Image:T(15,2).{{{ext}}}|80px|link=T(15,2)]]
T(15,2)
|
Visit T(5,4)'s page at Knotilus!
Visit T(5,4)'s page at the original Knot Atlas!
Knot presentations
Planar diagram presentation
|
X17,25,18,24 X10,26,11,25 X3,27,4,26 X11,19,12,18 X4,20,5,19 X27,21,28,20 X5,13,6,12 X28,14,29,13 X21,15,22,14 X29,7,30,6 X22,8,23,7 X15,9,16,8 X23,1,24,30 X16,2,17,1 X9,3,10,2
|
Gauss code
|
-1, 7, -2, 1, -3, 5, -4, 6, -7, 2, -6, 3, -5, 4
|
Dowker-Thistlethwaite code
|
4 10 12 14 2 8 6
|
Symmetry type
|
Reversible
|
Unknotting number
|
2
|
3-genus
|
2
|
Bridge index (super bridge index)
|
2 (4)
|
Nakanishi index
|
1
|
Polynomial invariants
Alexander polynomial |
|
Conway polynomial |
|
2nd Alexander ideal (db, data sources) |
|
Determinant and Signature |
{ 5, 8 } |
Jones polynomial |
|
HOMFLY-PT polynomial (db, data sources) |
|
Kauffman polynomial (db, data sources) |
|
The A2 invariant |
Data:T(5,4)/QuantumInvariant/A2/1,0 |
The G2 invariant |
Data:T(5,4)/QuantumInvariant/G2/1,0 |
Further Quantum Invariants
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot
5_2) as the notebook
PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["T(5,4)"];
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
|
Out[5]=
|
|
In[6]:=
|
Alexander[K, 2][t]
|
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
|
In[10]:=
|
Kauffman[K][a, z]
|
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
|
V2,1 through V6,9:
|
V2,1
|
V3,1
|
V4,1
|
V4,2
|
V4,3
|
V5,1
|
V5,2
|
V5,3
|
V5,4
|
V6,1
|
V6,2
|
V6,3
|
V6,4
|
V6,5
|
V6,6
|
V6,7
|
V6,8
|
V6,9
|
Data:T(5,4)/V 2,1
|
Data:T(5,4)/V 3,1
|
Data:T(5,4)/V 4,1
|
Data:T(5,4)/V 4,2
|
Data:T(5,4)/V 4,3
|
Data:T(5,4)/V 5,1
|
Data:T(5,4)/V 5,2
|
Data:T(5,4)/V 5,3
|
Data:T(5,4)/V 5,4
|
Data:T(5,4)/V 6,1
|
Data:T(5,4)/V 6,2
|
Data:T(5,4)/V 6,3
|
Data:T(5,4)/V 6,4
|
Data:T(5,4)/V 6,5
|
Data:T(5,4)/V 6,6
|
Data:T(5,4)/V 6,7
|
Data:T(5,4)/V 6,8
|
Data:T(5,4)/V 6,9
|
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Template:Khovanov Invariants
Template:Quantum Invariants