T(21,2)
|
[[Image:T(7,4).{{{ext}}}|80px|link=T(7,4)]] |
[[Image:T(11,3).{{{ext}}}|80px|link=T(11,3)]] |
Visit T(21,2)'s page at Knotilus!
Visit T(21,2)'s page at the original Knot Atlas!
Knot presentations
| Planar diagram presentation | X11,33,12,32 X33,13,34,12 X13,35,14,34 X35,15,36,14 X15,37,16,36 X37,17,38,16 X17,39,18,38 X39,19,40,18 X19,41,20,40 X41,21,42,20 X21,1,22,42 X1,23,2,22 X23,3,24,2 X3,25,4,24 X25,5,26,4 X5,27,6,26 X27,7,28,6 X7,29,8,28 X29,9,30,8 X9,31,10,30 X31,11,32,10 |
| Gauss code | {-12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11} |
| Dowker-Thistlethwaite code | 22 24 26 28 30 32 34 36 38 40 42 2 4 6 8 10 12 14 16 18 20 |
Polynomial invariants
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^{10}-t^9+t^8-t^7+t^6-t^5+t^4-t^3+t^2-t+1- t^{-1} + t^{-2} - t^{-3} + t^{-4} - t^{-5} + t^{-6} - t^{-7} + t^{-8} - t^{-9} + t^{-10} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^{20}+19 z^{18}+153 z^{16}+680 z^{14}+1820 z^{12}+3003 z^{10}+3003 z^8+1716 z^6+495 z^4+55 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 21, 20 } |
| Jones polynomial | [math]\displaystyle{ -q^{31}+q^{30}-q^{29}+q^{28}-q^{27}+q^{26}-q^{25}+q^{24}-q^{23}+q^{22}-q^{21}+q^{20}-q^{19}+q^{18}-q^{17}+q^{16}-q^{15}+q^{14}-q^{13}+q^{12}+q^{10} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^{20} a^{-20} +20 z^{18} a^{-20} -z^{18} a^{-22} +171 z^{16} a^{-20} -18 z^{16} a^{-22} +816 z^{14} a^{-20} -136 z^{14} a^{-22} +2380 z^{12} a^{-20} -560 z^{12} a^{-22} +4368 z^{10} a^{-20} -1365 z^{10} a^{-22} +5005 z^8 a^{-20} -2002 z^8 a^{-22} +3432 z^6 a^{-20} -1716 z^6 a^{-22} +1287 z^4 a^{-20} -792 z^4 a^{-22} +220 z^2 a^{-20} -165 z^2 a^{-22} +11 a^{-20} -10 a^{-22} }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^{20}a^{-20}+z^{20}a^{-22}+z^{19}a^{-21}+z^{19}a^{-23}-20z^{18}a^{-20}-19z^{18}a^{-22}+z^{18}a^{-24}-18z^{17}a^{-21}-17z^{17}a^{-23}+z^{17}a^{-25}+171z^{16}a^{-20}+154z^{16}a^{-22}-16z^{16}a^{-24}+z^{16}a^{-26}+136z^{15}a^{-21}+120z^{15}a^{-23}-15z^{15}a^{-25}+z^{15}a^{-27}-816z^{14}a^{-20}-696z^{14}a^{-22}+105z^{14}a^{-24}-14z^{14}a^{-26}+z^{14}a^{-28}-560z^{13}a^{-21}-455z^{13}a^{-23}+91z^{13}a^{-25}-13z^{13}a^{-27}+z^{13}a^{-29}+2380z^{12}a^{-20}+1925z^{12}a^{-22}-364z^{12}a^{-24}+78z^{12}a^{-26}-12z^{12}a^{-28}+z^{12}a^{-30}+1365z^{11}a^{-21}+1001z^{11}a^{-23}-286z^{11}a^{-25}+66z^{11}a^{-27}-11z^{11}a^{-29}+z^{11}a^{-31}-4368z^{10}a^{-20}-3367z^{10}a^{-22}+715z^{10}a^{-24}-220z^{10}a^{-26}+55z^{10}a^{-28}-10z^{10}a^{-30}+z^{10}a^{-32}-2002z^9a^{-21}-1287z^9a^{-23}+495z^9a^{-25}-165z^9a^{-27}+45z^9a^{-29}-9z^9a^{-31}+z^9a^{-33}+5005z^8a^{-20}+3718z^8a^{-22}-792z^8a^{-24}+330z^8a^{-26}-120z^8a^{-28}+36z^8a^{-30}-8z^8a^{-32}+z^8a^{-34}+1716z^7a^{-21}+924z^7a^{-23}-462z^7a^{-25}+210z^7a^{-27}-84z^7a^{-29}+28z^7a^{-31}-7z^7a^{-33}+z^7a^{-35}-3432z^6a^{-20}-2508z^6a^{-22}+462z^6a^{-24}-252z^6a^{-26}+126z^6a^{-28}-56z^6a^{-30}+21z^6a^{-32}-6z^6a^{-34}+z^6a^{-36}-792z^5a^{-21}-330z^5a^{-23}+210z^5a^{-25}-126z^5a^{-27}+70z^5a^{-29}-35z^5a^{-31}+15z^5a^{-33}-5z^5a^{-35}+z^5a^{-37}+1287z^4a^{-20}+957z^4a^{-22}-120z^4a^{-24}+84z^4a^{-26}-56z^4a^{-28}+35z^4a^{-30}-20z^4a^{-32}+10z^4a^{-34}-4z^4a^{-36}+z^4a^{-38}+165z^3a^{-21}+45z^3a^{-23}-36z^3a^{-25}+28z^3a^{-27}-21z^3a^{-29}+15z^3a^{-31}-10z^3a^{-33}+6z^3a^{-35}-3z^3a^{-37}+z^3a^{-39}-220z^2a^{-20}-175z^2a^{-22}+9z^2a^{-24}-8z^2a^{-26}+7z^2a^{-28}-6z^2a^{-30}+5z^2a^{-32}-4z^2a^{-34}+3z^2a^{-36}-2z^2a^{-38}+z^2a^{-40}-10za^{-21}-za^{-23}+za^{-25}-za^{-27}+za^{-29}-za^{-31}+za^{-33}-za^{-35}+za^{-37}-za^{-39}+za^{-41}+11a^{-20}+10a^{-22} }[/math] |
| The A2 invariant | Data:T(21,2)/QuantumInvariant/A2/1,0 |
| The G2 invariant | Data:T(21,2)/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(21,2)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^{10}-t^9+t^8-t^7+t^6-t^5+t^4-t^3+t^2-t+1- t^{-1} + t^{-2} - t^{-3} + t^{-4} - t^{-5} + t^{-6} - t^{-7} + t^{-8} - t^{-9} + t^{-10} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^{20}+19 z^{18}+153 z^{16}+680 z^{14}+1820 z^{12}+3003 z^{10}+3003 z^8+1716 z^6+495 z^4+55 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 21, 20 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^{31}+q^{30}-q^{29}+q^{28}-q^{27}+q^{26}-q^{25}+q^{24}-q^{23}+q^{22}-q^{21}+q^{20}-q^{19}+q^{18}-q^{17}+q^{16}-q^{15}+q^{14}-q^{13}+q^{12}+q^{10} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^{20} a^{-20} +20 z^{18} a^{-20} -z^{18} a^{-22} +171 z^{16} a^{-20} -18 z^{16} a^{-22} +816 z^{14} a^{-20} -136 z^{14} a^{-22} +2380 z^{12} a^{-20} -560 z^{12} a^{-22} +4368 z^{10} a^{-20} -1365 z^{10} a^{-22} +5005 z^8 a^{-20} -2002 z^8 a^{-22} +3432 z^6 a^{-20} -1716 z^6 a^{-22} +1287 z^4 a^{-20} -792 z^4 a^{-22} +220 z^2 a^{-20} -165 z^2 a^{-22} +11 a^{-20} -10 a^{-22} }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^{20}a^{-20}+z^{20}a^{-22}+z^{19}a^{-21}+z^{19}a^{-23}-20z^{18}a^{-20}-19z^{18}a^{-22}+z^{18}a^{-24}-18z^{17}a^{-21}-17z^{17}a^{-23}+z^{17}a^{-25}+171z^{16}a^{-20}+154z^{16}a^{-22}-16z^{16}a^{-24}+z^{16}a^{-26}+136z^{15}a^{-21}+120z^{15}a^{-23}-15z^{15}a^{-25}+z^{15}a^{-27}-816z^{14}a^{-20}-696z^{14}a^{-22}+105z^{14}a^{-24}-14z^{14}a^{-26}+z^{14}a^{-28}-560z^{13}a^{-21}-455z^{13}a^{-23}+91z^{13}a^{-25}-13z^{13}a^{-27}+z^{13}a^{-29}+2380z^{12}a^{-20}+1925z^{12}a^{-22}-364z^{12}a^{-24}+78z^{12}a^{-26}-12z^{12}a^{-28}+z^{12}a^{-30}+1365z^{11}a^{-21}+1001z^{11}a^{-23}-286z^{11}a^{-25}+66z^{11}a^{-27}-11z^{11}a^{-29}+z^{11}a^{-31}-4368z^{10}a^{-20}-3367z^{10}a^{-22}+715z^{10}a^{-24}-220z^{10}a^{-26}+55z^{10}a^{-28}-10z^{10}a^{-30}+z^{10}a^{-32}-2002z^9a^{-21}-1287z^9a^{-23}+495z^9a^{-25}-165z^9a^{-27}+45z^9a^{-29}-9z^9a^{-31}+z^9a^{-33}+5005z^8a^{-20}+3718z^8a^{-22}-792z^8a^{-24}+330z^8a^{-26}-120z^8a^{-28}+36z^8a^{-30}-8z^8a^{-32}+z^8a^{-34}+1716z^7a^{-21}+924z^7a^{-23}-462z^7a^{-25}+210z^7a^{-27}-84z^7a^{-29}+28z^7a^{-31}-7z^7a^{-33}+z^7a^{-35}-3432z^6a^{-20}-2508z^6a^{-22}+462z^6a^{-24}-252z^6a^{-26}+126z^6a^{-28}-56z^6a^{-30}+21z^6a^{-32}-6z^6a^{-34}+z^6a^{-36}-792z^5a^{-21}-330z^5a^{-23}+210z^5a^{-25}-126z^5a^{-27}+70z^5a^{-29}-35z^5a^{-31}+15z^5a^{-33}-5z^5a^{-35}+z^5a^{-37}+1287z^4a^{-20}+957z^4a^{-22}-120z^4a^{-24}+84z^4a^{-26}-56z^4a^{-28}+35z^4a^{-30}-20z^4a^{-32}+10z^4a^{-34}-4z^4a^{-36}+z^4a^{-38}+165z^3a^{-21}+45z^3a^{-23}-36z^3a^{-25}+28z^3a^{-27}-21z^3a^{-29}+15z^3a^{-31}-10z^3a^{-33}+6z^3a^{-35}-3z^3a^{-37}+z^3a^{-39}-220z^2a^{-20}-175z^2a^{-22}+9z^2a^{-24}-8z^2a^{-26}+7z^2a^{-28}-6z^2a^{-30}+5z^2a^{-32}-4z^2a^{-34}+3z^2a^{-36}-2z^2a^{-38}+z^2a^{-40}-10za^{-21}-za^{-23}+za^{-25}-za^{-27}+za^{-29}-za^{-31}+za^{-33}-za^{-35}+za^{-37}-za^{-39}+za^{-41}+11a^{-20}+10a^{-22} }[/math] |
Vassiliev invariants
| V2 and V3 | {0, 385}) |
Khovanov Homology. The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s+1 }[/math], where [math]\displaystyle{ s= }[/math]20 is the signature of T(21,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | χ | |||||||||
| 63 | 1 | -1 | ||||||||||||||||||||||||||||||
| 61 | 0 | |||||||||||||||||||||||||||||||
| 59 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
| 57 | 0 | |||||||||||||||||||||||||||||||
| 55 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
| 53 | 0 | |||||||||||||||||||||||||||||||
| 51 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
| 49 | 0 | |||||||||||||||||||||||||||||||
| 47 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
| 45 | 0 | |||||||||||||||||||||||||||||||
| 43 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
| 41 | 0 | |||||||||||||||||||||||||||||||
| 39 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
| 37 | 0 | |||||||||||||||||||||||||||||||
| 35 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
| 33 | 0 | |||||||||||||||||||||||||||||||
| 31 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
| 29 | 0 | |||||||||||||||||||||||||||||||
| 27 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
| 25 | 0 | |||||||||||||||||||||||||||||||
| 23 | 1 | 1 | ||||||||||||||||||||||||||||||
| 21 | 1 | 1 | ||||||||||||||||||||||||||||||
| 19 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 19, 2005, 13:11:25)... | |
In[2]:= | Crossings[TorusKnot[21, 2]] |
Out[2]= | 21 |
In[3]:= | PD[TorusKnot[21, 2]] |
Out[3]= | PD[X[11, 33, 12, 32], X[33, 13, 34, 12], X[13, 35, 14, 34],X[35, 15, 36, 14], X[15, 37, 16, 36], X[37, 17, 38, 16], X[17, 39, 18, 38], X[39, 19, 40, 18], X[19, 41, 20, 40], X[41, 21, 42, 20], X[21, 1, 22, 42], X[1, 23, 2, 22], X[23, 3, 24, 2], X[3, 25, 4, 24], X[25, 5, 26, 4], X[5, 27, 6, 26], X[27, 7, 28, 6], X[7, 29, 8, 28], X[29, 9, 30, 8], X[9, 31, 10, 30],X[31, 11, 32, 10]] |
In[4]:= | GaussCode[TorusKnot[21, 2]] |
Out[4]= | GaussCode[-12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -1, 2, -3, 4,-5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20,-21, 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11] |
In[5]:= | BR[TorusKnot[21, 2]] |
Out[5]= | BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}] |
In[6]:= | alex = Alexander[TorusKnot[21, 2]][t] |
Out[6]= | -10 -9 -8 -7 -6 -5 -4 -3 -2 1 2 |
In[7]:= | Conway[TorusKnot[21, 2]][z] |
Out[7]= | 2 4 6 8 10 12 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[21, 2]], KnotSignature[TorusKnot[21, 2]]} |
Out[9]= | {21, 20} |
In[10]:= | J=Jones[TorusKnot[21, 2]][q] |
Out[10]= | 10 12 13 14 15 16 17 18 19 20 21 22 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[21, 2]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[21, 2]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[21, 2]], Vassiliev[3][TorusKnot[21, 2]]} |
Out[14]= | {0, 385} |
In[15]:= | Kh[TorusKnot[21, 2]][q, t] |
Out[15]= | 19 21 23 2 27 3 27 4 31 5 31 6 35 7 |