T(9,4)
[[Image:T(13,3).{{{ext}}}|80px|link=T(13,3)]] |
[[Image:T(27,2).{{{ext}}}|80px|link=T(27,2)]] |
Visit T(9,4)'s page at Knotilus!
Visit T(9,4)'s page at the original Knot Atlas!
Knot presentations
Planar diagram presentation | X11,25,12,24 X52,26,53,25 X39,27,40,26 X53,13,54,12 X40,14,41,13 X27,15,28,14 X41,1,42,54 X28,2,29,1 X15,3,16,2 X29,43,30,42 X16,44,17,43 X3,45,4,44 X17,31,18,30 X4,32,5,31 X45,33,46,32 X5,19,6,18 X46,20,47,19 X33,21,34,20 X47,7,48,6 X34,8,35,7 X21,9,22,8 X35,49,36,48 X22,50,23,49 X9,51,10,50 X23,37,24,36 X10,38,11,37 X51,39,52,38 |
Gauss code | {8, 9, -12, -14, -16, 19, 20, 21, -24, -26, -1, 4, 5, 6, -9, -11, -13, 16, 17, 18, -21, -23, -25, 1, 2, 3, -6, -8, -10, 13, 14, 15, -18, -20, -22, 25, 26, 27, -3, -5, -7, 10, 11, 12, -15, -17, -19, 22, 23, 24, -27, -2, -4, 7} |
Dowker-Thistlethwaite code | 28 -44 -18 34 -50 -24 40 -2 -30 46 -8 -36 52 -14 -42 4 -20 -48 10 -26 -54 16 -32 -6 22 -38 -12 |
Polynomial invariants
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(9,4)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 9, 16 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Data:T(9,4)/HOMFLYPT Polynomial |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:T(9,4)/Kauffman Polynomial |
Vassiliev invariants
V2 and V3 | {0, 300}) |
Khovanov Homology. The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 16 is the signature of T(9,4). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | χ | |||||||||
51 | 1 | 1 | 0 | |||||||||||||||||||||||||
49 | 0 | |||||||||||||||||||||||||||
47 | 2 | 1 | -1 | |||||||||||||||||||||||||
45 | 1 | 2 | -1 | |||||||||||||||||||||||||
43 | 1 | 1 | 1 | -1 | ||||||||||||||||||||||||
41 | 2 | 2 | 0 | |||||||||||||||||||||||||
39 | 2 | 1 | 1 | 0 | ||||||||||||||||||||||||
37 | 1 | 1 | 0 | |||||||||||||||||||||||||
35 | 1 | 1 | 2 | 0 | ||||||||||||||||||||||||
33 | 1 | 1 | 0 | |||||||||||||||||||||||||
31 | 1 | 1 | 1 | 1 | ||||||||||||||||||||||||
29 | 1 | 1 | ||||||||||||||||||||||||||
27 | 1 | 1 | ||||||||||||||||||||||||||
25 | 1 | 1 | ||||||||||||||||||||||||||
23 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 19, 2005, 13:11:25)... | |
In[2]:= | Crossings[TorusKnot[9, 4]] |
Out[2]= | 27 |
In[3]:= | PD[TorusKnot[9, 4]] |
Out[3]= | PD[X[11, 25, 12, 24], X[52, 26, 53, 25], X[39, 27, 40, 26],X[53, 13, 54, 12], X[40, 14, 41, 13], X[27, 15, 28, 14], X[41, 1, 42, 54], X[28, 2, 29, 1], X[15, 3, 16, 2], X[29, 43, 30, 42], X[16, 44, 17, 43], X[3, 45, 4, 44], X[17, 31, 18, 30], X[4, 32, 5, 31], X[45, 33, 46, 32], X[5, 19, 6, 18], X[46, 20, 47, 19], X[33, 21, 34, 20], X[47, 7, 48, 6], X[34, 8, 35, 7], X[21, 9, 22, 8], X[35, 49, 36, 48], X[22, 50, 23, 49], X[9, 51, 10, 50], X[23, 37, 24, 36],X[10, 38, 11, 37], X[51, 39, 52, 38]] |
In[4]:= | GaussCode[TorusKnot[9, 4]] |
Out[4]= | GaussCode[8, 9, -12, -14, -16, 19, 20, 21, -24, -26, -1, 4, 5, 6, -9,-11, -13, 16, 17, 18, -21, -23, -25, 1, 2, 3, -6, -8, -10, 13, 14, 15, -18, -20, -22, 25, 26, 27, -3, -5, -7, 10, 11, 12, -15, -17, -19,22, 23, 24, -27, -2, -4, 7] |
In[5]:= | BR[TorusKnot[9, 4]] |
Out[5]= | BR[4, {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}] |
In[6]:= | alex = Alexander[TorusKnot[9, 4]][t] |
Out[6]= | -12 -11 -8 -7 -4 -2 2 4 7 8 11 12 1 + t - t + t - t + t - t - t + t - t + t - t + t |
In[7]:= | Conway[TorusKnot[9, 4]][z] |
Out[7]= | 2 4 6 8 10 12 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[9, 4]], KnotSignature[TorusKnot[9, 4]]} |
Out[9]= | {9, 16} |
In[10]:= | J=Jones[TorusKnot[9, 4]][q] |
Out[10]= | 12 14 16 17 18 19 20 21 23 q + q + q - q + q - q + q - q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[9, 4]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[9, 4]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[9, 4]], Vassiliev[3][TorusKnot[9, 4]]} |
Out[14]= | {0, 300} |
In[15]:= | Kh[TorusKnot[9, 4]][q, t] |
Out[15]= | 23 25 27 2 31 3 29 4 31 4 33 5 35 5 |