T(8,5)

From Knot Atlas
Revision as of 20:25, 27 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search


T(31,2).jpg

T(31,2)

T(16,3).jpg

T(16,3)

T(8,5).jpg Visit T(8,5)'s page at Knotilus!

Visit T(8,5)'s page at the original Knot Atlas!

T(8,5) Quick Notes


T(8,5) Further Notes and Views

Knot presentations

Planar diagram presentation X54,16,55,15 X29,17,30,16 X4,18,5,17 X43,19,44,18 X30,56,31,55 X5,57,6,56 X44,58,45,57 X19,59,20,58 X6,32,7,31 X45,33,46,32 X20,34,21,33 X59,35,60,34 X46,8,47,7 X21,9,22,8 X60,10,61,9 X35,11,36,10 X22,48,23,47 X61,49,62,48 X36,50,37,49 X11,51,12,50 X62,24,63,23 X37,25,38,24 X12,26,13,25 X51,27,52,26 X38,64,39,63 X13,1,14,64 X52,2,53,1 X27,3,28,2 X14,40,15,39 X53,41,54,40 X28,42,29,41 X3,43,4,42
Gauss code 27, 28, -32, -3, -6, -9, 13, 14, 15, 16, -20, -23, -26, -29, 1, 2, 3, 4, -8, -11, -14, -17, 21, 22, 23, 24, -28, -31, -2, -5, 9, 10, 11, 12, -16, -19, -22, -25, 29, 30, 31, 32, -4, -7, -10, -13, 17, 18, 19, 20, -24, -27, -30, -1, 5, 6, 7, 8, -12, -15, -18, -21, 25, 26
Dowker-Thistlethwaite code 52 -42 -56 46 60 -50 -64 54 4 -58 -8 62 12 -2 -16 6 20 -10 -24 14 28 -18 -32 22 36 -26 -40 30 44 -34 -48 38
Conway Notation Data:T(8,5)/Conway Notation

Knot presentations

Planar diagram presentation X54,16,55,15 X29,17,30,16 X4,18,5,17 X43,19,44,18 X30,56,31,55 X5,57,6,56 X44,58,45,57 X19,59,20,58 X6,32,7,31 X45,33,46,32 X20,34,21,33 X59,35,60,34 X46,8,47,7 X21,9,22,8 X60,10,61,9 X35,11,36,10 X22,48,23,47 X61,49,62,48 X36,50,37,49 X11,51,12,50 X62,24,63,23 X37,25,38,24 X12,26,13,25 X51,27,52,26 X38,64,39,63 X13,1,14,64 X52,2,53,1 X27,3,28,2 X14,40,15,39 X53,41,54,40 X28,42,29,41 X3,43,4,42
Gauss code
Dowker-Thistlethwaite code 52 -42 -56 46 60 -50 -64 54 4 -58 -8 62 12 -2 -16 6 20 -10 -24 14 28 -18 -32 22 36 -26 -40 30 44 -34 -48 38

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 5, 20 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources) Data:T(8,5)/HOMFLYPT Polynomial
Kauffman polynomial (db, data sources) Data:T(8,5)/Kauffman Polynomial
The A2 invariant Data:T(8,5)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(8,5)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3: (63, 420)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:T(8,5)/V 2,1 Data:T(8,5)/V 3,1 Data:T(8,5)/V 4,1 Data:T(8,5)/V 4,2 Data:T(8,5)/V 4,3 Data:T(8,5)/V 5,1 Data:T(8,5)/V 5,2 Data:T(8,5)/V 5,3 Data:T(8,5)/V 5,4 Data:T(8,5)/V 6,1 Data:T(8,5)/V 6,2 Data:T(8,5)/V 6,3 Data:T(8,5)/V 6,4 Data:T(8,5)/V 6,5 Data:T(8,5)/V 6,6 Data:T(8,5)/V 6,7 Data:T(8,5)/V 6,8 Data:T(8,5)/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 20 is the signature of T(8,5). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
012345678910111213141516171819χ
57                  110
55                11  0
53                121 0
51              131   -1
49            12 11   -1
47             32     -1
45           32       -1
43         2  2       0
41       1 12         0
39     1 12           0
37     11 1           1
35   11 1             1
33    1               1
31  1                 1
291                   1
271                   1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[TorusKnot[8, 5]]
Out[2]=  
32
In[3]:=
PD[TorusKnot[8, 5]]
Out[3]=  
PD[X[54, 16, 55, 15], X[29, 17, 30, 16], X[4, 18, 5, 17], 
 X[43, 19, 44, 18], X[30, 56, 31, 55], X[5, 57, 6, 56], 

 X[44, 58, 45, 57], X[19, 59, 20, 58], X[6, 32, 7, 31], 

 X[45, 33, 46, 32], X[20, 34, 21, 33], X[59, 35, 60, 34], 

 X[46, 8, 47, 7], X[21, 9, 22, 8], X[60, 10, 61, 9], 

 X[35, 11, 36, 10], X[22, 48, 23, 47], X[61, 49, 62, 48], 

 X[36, 50, 37, 49], X[11, 51, 12, 50], X[62, 24, 63, 23], 

 X[37, 25, 38, 24], X[12, 26, 13, 25], X[51, 27, 52, 26], 

 X[38, 64, 39, 63], X[13, 1, 14, 64], X[52, 2, 53, 1], 

 X[27, 3, 28, 2], X[14, 40, 15, 39], X[53, 41, 54, 40], 

X[28, 42, 29, 41], X[3, 43, 4, 42]]
In[4]:=
GaussCode[TorusKnot[8, 5]]
Out[4]=  
GaussCode[27, 28, -32, -3, -6, -9, 13, 14, 15, 16, -20, -23, -26, -29, 
 1, 2, 3, 4, -8, -11, -14, -17, 21, 22, 23, 24, -28, -31, -2, -5, 9, 

 10, 11, 12, -16, -19, -22, -25, 29, 30, 31, 32, -4, -7, -10, -13, 17, 

18, 19, 20, -24, -27, -30, -1, 5, 6, 7, 8, -12, -15, -18, -21, 25, 26]
In[5]:=
BR[TorusKnot[8, 5]]
Out[5]=  
BR[5, {1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 
   2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4}]
In[6]:=
alex = Alexander[TorusKnot[8, 5]][t]
Out[6]=  
      -14    -13    -9    -8    -6    -5    -4    -3   1        3

-1 + t - t + t - t + t - t + t - t + - + t - t +

                                                      t

  4    5    6    8    9    13    14
t - t + t - t + t - t + t
In[7]:=
Conway[TorusKnot[8, 5]][z]
Out[7]=  
        2         4         6          8          10           12

1 + 63 z + 1092 z + 8169 z + 32055 z + 73876 z + 107849 z +

         14          16          18          20         22        24
 104771 z   + 69785 z   + 32320 z   + 10395 z   + 2277 z   + 324 z   + 

     26    28
27 z + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{}
In[9]:=
{KnotDet[TorusKnot[8, 5]], KnotSignature[TorusKnot[8, 5]]}
Out[9]=  
{5, 20}
In[10]:=
J=Jones[TorusKnot[8, 5]][q]
Out[10]=  
 14    16    18    23    25
q   + q   + q   - q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{}
In[12]:=
A2Invariant[TorusKnot[8, 5]][q]
Out[12]=  
NotAvailable
In[13]:=
Kauffman[TorusKnot[8, 5]][a, z]
Out[13]=  
NotAvailable
In[14]:=
{Vassiliev[2][TorusKnot[8, 5]], Vassiliev[3][TorusKnot[8, 5]]}
Out[14]=  
{0, 420}
In[15]:=
Kh[TorusKnot[8, 5]][q, t]
Out[15]=  
 27    29    31  2    35  3    33  4    35  4    37  5    39  5

q + q + q t + q t + q t + q t + q t + q t +

  35  6    37  6    39  7    41  7    37  8      39  8    41  9
 q   t  + q   t  + q   t  + q   t  + q   t  + 2 q   t  + q   t  + 

    43  9      41  10      45  11      43  12      45  12    49  12
 2 q   t  + 2 q   t   + 3 q   t   + 2 q   t   + 2 q   t   + q   t   + 

    47  13      49  13      47  14    51  14    49  15      51  15
 3 q   t   + 2 q   t   + 2 q   t   + q   t   + q   t   + 3 q   t   + 

  49  16    51  16    53  16    55  16      53  17    55  17
 q   t   + q   t   + q   t   + q   t   + 2 q   t   + q   t   + 

  53  18    57  18    57  19
q t + q t + q t