10 56
|
|
|
|
Visit 10 56's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 56's page at Knotilus! Visit 10 56's page at the original Knot Atlas! |
10 56 Quick Notes |
Knot presentations
| Planar diagram presentation | X4251 X10,4,11,3 X12,6,13,5 X18,14,19,13 X16,7,17,8 X6,17,7,18 X20,16,1,15 X14,20,15,19 X8,12,9,11 X2,10,3,9 |
| Gauss code | 1, -10, 2, -1, 3, -6, 5, -9, 10, -2, 9, -3, 4, -8, 7, -5, 6, -4, 8, -7 |
| Dowker-Thistlethwaite code | 4 10 12 16 2 8 18 20 6 14 |
| Conway Notation | [221,3,2] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^3+8 t^2-14 t+17-14 t^{-1} +8 t^{-2} -2 t^{-3} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^6-4 z^4+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 65, 4 } |
| Jones polynomial | |
| HOMFLY-PT polynomial (db, data sources) | |
| Kauffman polynomial (db, data sources) | |
| The A2 invariant | |
| The G2 invariant |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^2- q^{-2} - q^{-4} +3 q^{-6} +4 q^{-8} - q^{-10} -6 q^{-12} - q^{-14} +9 q^{-16} +10 q^{-18} -6 q^{-20} -14 q^{-22} +19 q^{-26} +11 q^{-28} -14 q^{-30} -18 q^{-32} +5 q^{-34} +20 q^{-36} +4 q^{-38} -18 q^{-40} -11 q^{-42} +9 q^{-44} +10 q^{-46} -8 q^{-48} -13 q^{-50} +3 q^{-52} +11 q^{-54} -2 q^{-56} -13 q^{-58} +14 q^{-62} +7 q^{-64} -12 q^{-66} -9 q^{-68} +12 q^{-70} +16 q^{-72} -6 q^{-74} -19 q^{-76} -2 q^{-78} +19 q^{-80} +11 q^{-82} -13 q^{-84} -17 q^{-86} +2 q^{-88} +15 q^{-90} +5 q^{-92} -8 q^{-94} -8 q^{-96} + q^{-98} +6 q^{-100} +2 q^{-102} -2 q^{-104} -2 q^{-106} + q^{-110} } |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} - q^{-4} +3 q^{-6} -2 q^{-8} +7 q^{-10} -5 q^{-12} +10 q^{-14} -8 q^{-16} +15 q^{-18} -13 q^{-20} +15 q^{-22} -13 q^{-24} +15 q^{-26} -10 q^{-28} +7 q^{-30} -3 q^{-32} - q^{-34} +4 q^{-36} -17 q^{-38} +13 q^{-40} -24 q^{-42} +21 q^{-44} -32 q^{-46} +26 q^{-48} -26 q^{-50} +29 q^{-52} -20 q^{-54} +20 q^{-56} -11 q^{-58} +13 q^{-60} -3 q^{-64} +4 q^{-66} -10 q^{-68} +14 q^{-70} -15 q^{-72} +12 q^{-74} -16 q^{-76} +15 q^{-78} -10 q^{-80} +8 q^{-82} -8 q^{-84} +6 q^{-86} -3 q^{-88} +2 q^{-90} -2 q^{-92} + q^{-94} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} - q^{-4} +4 q^{-6} -5 q^{-8} +6 q^{-10} -4 q^{-12} - q^{-14} +12 q^{-16} -20 q^{-18} +30 q^{-20} -30 q^{-22} +20 q^{-24} +2 q^{-26} -32 q^{-28} +65 q^{-30} -79 q^{-32} +73 q^{-34} -37 q^{-36} -17 q^{-38} +73 q^{-40} -108 q^{-42} +110 q^{-44} -70 q^{-46} +6 q^{-48} +57 q^{-50} -93 q^{-52} +86 q^{-54} -39 q^{-56} -18 q^{-58} +67 q^{-60} -80 q^{-62} +48 q^{-64} +9 q^{-66} -79 q^{-68} +121 q^{-70} -120 q^{-72} +71 q^{-74} +7 q^{-76} -92 q^{-78} +146 q^{-80} -158 q^{-82} +116 q^{-84} -44 q^{-86} -46 q^{-88} +109 q^{-90} -130 q^{-92} +103 q^{-94} -38 q^{-96} -28 q^{-98} +71 q^{-100} -73 q^{-102} +35 q^{-104} +21 q^{-106} -68 q^{-108} +89 q^{-110} -64 q^{-112} +13 q^{-114} +50 q^{-116} -94 q^{-118} +107 q^{-120} -83 q^{-122} +37 q^{-124} +12 q^{-126} -54 q^{-128} +72 q^{-130} -68 q^{-132} +50 q^{-134} -20 q^{-136} -4 q^{-138} +19 q^{-140} -29 q^{-142} +26 q^{-144} -19 q^{-146} +11 q^{-148} -2 q^{-150} -3 q^{-152} +5 q^{-154} -6 q^{-156} +4 q^{-158} -2 q^{-160} + q^{-162} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 56"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^3+8 t^2-14 t+17-14 t^{-1} +8 t^{-2} -2 t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^6-4 z^4+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 65, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
| V2 and V3: | (0, -2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 4 is the signature of 10 56. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | χ | |||||||||
| 21 | 1 | 1 | |||||||||||||||||||
| 19 | 2 | -2 | |||||||||||||||||||
| 17 | 4 | 1 | 3 | ||||||||||||||||||
| 15 | 5 | 2 | -3 | ||||||||||||||||||
| 13 | 5 | 4 | 1 | ||||||||||||||||||
| 11 | 6 | 5 | -1 | ||||||||||||||||||
| 9 | 4 | 5 | -1 | ||||||||||||||||||
| 7 | 3 | 6 | 3 | ||||||||||||||||||
| 5 | 2 | 4 | -2 | ||||||||||||||||||
| 3 | 1 | 4 | 3 | ||||||||||||||||||
| 1 | 1 | -1 | |||||||||||||||||||
| -1 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 56]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 56]] |
Out[3]= | PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[12, 6, 13, 5], X[18, 14, 19, 13],X[16, 7, 17, 8], X[6, 17, 7, 18], X[20, 16, 1, 15],X[14, 20, 15, 19], X[8, 12, 9, 11], X[2, 10, 3, 9]] |
In[4]:= | GaussCode[Knot[10, 56]] |
Out[4]= | GaussCode[1, -10, 2, -1, 3, -6, 5, -9, 10, -2, 9, -3, 4, -8, 7, -5, 6, -4, 8, -7] |
In[5]:= | BR[Knot[10, 56]] |
Out[5]= | BR[4, {1, 1, 1, 2, -1, 2, -3, 2, 2, 2, -3}] |
In[6]:= | alex = Alexander[Knot[10, 56]][t] |
Out[6]= | 2 8 14 2 3 |
In[7]:= | Conway[Knot[10, 56]][z] |
Out[7]= | 4 6 1 - 4 z - 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 25], Knot[10, 56], Knot[11, Alternating, 140]} |
In[9]:= | {KnotDet[Knot[10, 56]], KnotSignature[Knot[10, 56]]} |
Out[9]= | {65, 4} |
In[10]:= | J=Jones[Knot[10, 56]][q] |
Out[10]= | 2 3 4 5 6 7 8 9 10 1 - 2 q + 5 q - 7 q + 10 q - 11 q + 10 q - 9 q + 6 q - 3 q + q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 25], Knot[10, 56]} |
In[12]:= | A2Invariant[Knot[10, 56]][q] |
Out[12]= | 4 6 8 10 12 18 20 22 24 26 |
In[13]:= | Kauffman[Knot[10, 56]][a, z] |
Out[13]= | 2 2 2 2 2-8 2 2 4 z 8 z 4 z z 2 z 2 z 7 z 3 z |
In[14]:= | {Vassiliev[2][Knot[10, 56]], Vassiliev[3][Knot[10, 56]]} |
Out[14]= | {0, -2} |
In[15]:= | Kh[Knot[10, 56]][q, t] |
Out[15]= | 33 5 1 q q 5 7 7 2 9 2 |


