In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Knot[8, 4]] |
Out[2]= | 8 |
In[3]:= | PD[Knot[8, 4]] |
Out[3]= | PD[X[6, 2, 7, 1], X[14, 10, 15, 9], X[10, 3, 11, 4], X[2, 13, 3, 14],
X[12, 5, 13, 6], X[16, 8, 1, 7], X[4, 11, 5, 12], X[8, 16, 9, 15]] |
In[4]:= | GaussCode[Knot[8, 4]] |
Out[4]= | GaussCode[1, -4, 3, -7, 5, -1, 6, -8, 2, -3, 7, -5, 4, -2, 8, -6] |
In[5]:= | BR[Knot[8, 4]] |
Out[5]= | BR[4, {-1, -1, -1, 2, -1, 2, 3, -2, 3}] |
In[6]:= | alex = Alexander[Knot[8, 4]][t] |
Out[6]= | 2 5 2
-5 - -- + - + 5 t - 2 t
2 t
t |
In[7]:= | Conway[Knot[8, 4]][z] |
Out[7]= | 2 4
1 - 3 z - 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[8, 4]} |
In[9]:= | {KnotDet[Knot[8, 4]], KnotSignature[Knot[8, 4]]} |
Out[9]= | {19, -2} |
In[10]:= | J=Jones[Knot[8, 4]][q] |
Out[10]= | -5 2 3 3 3 2 3
-3 + q - -- + -- - -- + - + 2 q - q + q
4 3 2 q
q q q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[8, 4]} |
In[12]:= | A2Invariant[Knot[8, 4]][q] |
Out[12]= | -16 -10 -6 -4 -2 2 4 6 8 10
-1 + q + q + q - q - q - q + q + q + q + q |
In[13]:= | Kauffman[Knot[8, 4]][a, z] |
Out[13]= | 2
2 4 z 3 2 7 z 2 2 4 2
-2 - -- + a - - + a z + 2 a z + 10 z + ---- - a z - 3 a z +
2 a 2
a a
3 4
6 2 4 z 3 3 3 5 3 4 5 z 2 4
a z + ---- - 3 a z - 5 a z + 2 a z - 11 z - ---- - 3 a z +
a 2
a
5 6 7
4 4 4 z 5 3 5 6 z 2 6 z 7
3 a z - ---- - a z + 3 a z + 3 z + -- + 2 a z + -- + a z
a 2 a
a |
In[14]:= | {Vassiliev[2][Knot[8, 4]], Vassiliev[3][Knot[8, 4]]} |
Out[14]= | {0, 1} |
In[15]:= | Kh[Knot[8, 4]][q, t] |
Out[15]= | 2 2 1 1 1 2 1 1 2 2 t
-- + - + ------ + ----- + ----- + ----- + ----- + ---- + ---- + --- +
3 q 11 4 9 3 7 3 7 2 5 2 5 3 q
q q t q t q t q t q t q t q t
3 2 3 3 7 4
q t + 2 q t + q t + q t |