8 3
|
|
![]() |
Visit 8 3's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 8 3's page at Knotilus! Visit 8 3's page at the original Knot Atlas! |
8 3 Quick Notes |
Knot presentations
Planar diagram presentation | X6271 X14,10,15,9 X10,5,11,6 X12,3,13,4 X4,11,5,12 X2,13,3,14 X16,8,1,7 X8,16,9,15 |
Gauss code | 1, -6, 4, -5, 3, -1, 7, -8, 2, -3, 5, -4, 6, -2, 8, -7 |
Dowker-Thistlethwaite code | 6 12 10 16 14 4 2 8 |
Conway Notation | [44] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -4 t+9-4 t^{-1} } |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1-4 z^2} |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
Determinant and Signature | { 17, 0 } |
Jones polynomial | |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^4-z^2 a^2-2 z^2-1-z^2 a^{-2} + a^{-4} } |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a z^7+z^7 a^{-1} +a^2 z^6+z^6 a^{-2} +2 z^6+a^3 z^5-4 a z^5-4 z^5 a^{-1} +z^5 a^{-3} +a^4 z^4-2 a^2 z^4-2 z^4 a^{-2} +z^4 a^{-4} -6 z^4-2 a^3 z^3+8 a z^3+8 z^3 a^{-1} -2 z^3 a^{-3} -3 a^4 z^2+a^2 z^2+z^2 a^{-2} -3 z^2 a^{-4} +8 z^2-4 a z-4 z a^{-1} +a^4+ a^{-4} -1} |
The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{14}+q^{12}+q^8-q^4-1- q^{-4} + q^{-8} + q^{-12} + q^{-14} } |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{66}+q^{62}-q^{60}+q^{58}+q^{56}-q^{54}+2 q^{52}-q^{50}+2 q^{48}-q^{46}+q^{42}-2 q^{40}+4 q^{38}-3 q^{36}+q^{34}+q^{32}-2 q^{30}+3 q^{28}-2 q^{26}+q^{24}+2 q^{22}-2 q^{20}+q^{18}-2 q^{14}+4 q^{12}-4 q^{10}+q^8-3 q^4+3 q^2-5+3 q^{-2} -3 q^{-4} + q^{-8} -4 q^{-10} +4 q^{-12} -2 q^{-14} + q^{-18} -2 q^{-20} +2 q^{-22} + q^{-24} -2 q^{-26} +3 q^{-28} -2 q^{-30} + q^{-32} + q^{-34} -3 q^{-36} +4 q^{-38} -2 q^{-40} + q^{-42} - q^{-46} +2 q^{-48} - q^{-50} +2 q^{-52} - q^{-54} + q^{-56} + q^{-58} - q^{-60} + q^{-62} + q^{-66} } |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^9+q^5-q^3- q^{-3} + q^{-5} + q^{-9} } |
2 | |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{51}-q^{41}-q^{39}+q^{35}-q^{33}-2 q^{31}+3 q^{27}+3 q^{25}-2 q^{23}-2 q^{21}+2 q^{19}+4 q^{17}-2 q^{15}-3 q^{13}+q^{11}+3 q^9-2 q^5-2 q^{-5} +3 q^{-9} + q^{-11} -3 q^{-13} -2 q^{-15} +4 q^{-17} +2 q^{-19} -2 q^{-21} -2 q^{-23} +3 q^{-25} +3 q^{-27} -2 q^{-31} - q^{-33} + q^{-35} - q^{-39} - q^{-41} + q^{-51} } |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{84}-q^{76}-q^{72}+q^{68}-q^{66}-2 q^{62}-q^{60}+3 q^{58}+2 q^{56}+3 q^{54}-2 q^{52}-3 q^{50}-q^{48}+q^{46}+7 q^{44}+2 q^{42}-3 q^{40}-6 q^{38}-5 q^{36}+6 q^{34}+6 q^{32}+q^{30}-6 q^{28}-9 q^{26}+4 q^{24}+6 q^{22}+3 q^{20}-3 q^{18}-7 q^{16}+q^{14}+3 q^{12}+3 q^{10}-2 q^6+q^4+q^2+1+ q^{-2} + q^{-4} -2 q^{-6} +3 q^{-10} +3 q^{-12} + q^{-14} -7 q^{-16} -3 q^{-18} +3 q^{-20} +6 q^{-22} +4 q^{-24} -9 q^{-26} -6 q^{-28} + q^{-30} +6 q^{-32} +6 q^{-34} -5 q^{-36} -6 q^{-38} -3 q^{-40} +2 q^{-42} +7 q^{-44} + q^{-46} - q^{-48} -3 q^{-50} -2 q^{-52} +3 q^{-54} +2 q^{-56} +3 q^{-58} - q^{-60} -2 q^{-62} - q^{-66} + q^{-68} - q^{-72} - q^{-76} + q^{-84} } |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{125}-q^{117}-q^{115}+q^{107}-2 q^{103}-q^{101}+q^{97}+3 q^{95}+3 q^{93}-3 q^{89}-3 q^{87}-2 q^{85}+3 q^{83}+5 q^{81}+5 q^{79}+q^{77}-5 q^{75}-8 q^{73}-6 q^{71}+8 q^{67}+10 q^{65}+5 q^{63}-6 q^{61}-14 q^{59}-11 q^{57}+12 q^{53}+16 q^{51}+7 q^{49}-11 q^{47}-18 q^{45}-10 q^{43}+6 q^{41}+18 q^{39}+16 q^{37}-3 q^{35}-15 q^{33}-12 q^{31}+11 q^{27}+12 q^{25}+2 q^{23}-7 q^{21}-8 q^{19}-2 q^{17}+4 q^{15}+4 q^{13}+2 q^{11}-q^9-3 q^7-3 q^{-7} - q^{-9} +2 q^{-11} +4 q^{-13} +4 q^{-15} -2 q^{-17} -8 q^{-19} -7 q^{-21} +2 q^{-23} +12 q^{-25} +11 q^{-27} -12 q^{-31} -15 q^{-33} -3 q^{-35} +16 q^{-37} +18 q^{-39} +6 q^{-41} -10 q^{-43} -18 q^{-45} -11 q^{-47} +7 q^{-49} +16 q^{-51} +12 q^{-53} -11 q^{-57} -14 q^{-59} -6 q^{-61} +5 q^{-63} +10 q^{-65} +8 q^{-67} -6 q^{-71} -8 q^{-73} -5 q^{-75} + q^{-77} +5 q^{-79} +5 q^{-81} +3 q^{-83} -2 q^{-85} -3 q^{-87} -3 q^{-89} +3 q^{-93} +3 q^{-95} + q^{-97} - q^{-101} -2 q^{-103} + q^{-107} - q^{-115} - q^{-117} + q^{-125} } |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{14}+q^{12}+q^8-q^4-1- q^{-4} + q^{-8} + q^{-12} + q^{-14} } |
1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{36}+2 q^{32}-2 q^{30}+4 q^{28}-2 q^{26}+4 q^{24}-6 q^{22}+5 q^{20}-6 q^{18}+4 q^{16}-6 q^{14}-q^{12}-6 q^8+8 q^6-8 q^4+16 q^2-6+16 q^{-2} -8 q^{-4} +8 q^{-6} -6 q^{-8} - q^{-12} -6 q^{-14} +4 q^{-16} -6 q^{-18} +5 q^{-20} -6 q^{-22} +4 q^{-24} -2 q^{-26} +4 q^{-28} -2 q^{-30} +2 q^{-32} + q^{-36} } |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}+q^{24}+q^{22}+q^{18}+2 q^{16}-2 q^{14}-q^{12}-3 q^8-q^6+q^4+2 q^2+2+2 q^{-2} + q^{-4} - q^{-6} -3 q^{-8} - q^{-12} -2 q^{-14} +2 q^{-16} + q^{-18} + q^{-22} + q^{-24} + q^{-28} } |
1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{19}+q^{17}+q^{15}+q^{11}-q^5-q- q^{-1} - q^{-5} + q^{-11} + q^{-15} + q^{-17} + q^{-19} } |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}+q^{24}-q^{22}+2 q^{20}-q^{18}+2 q^{16}+q^{12}-q^8+q^6-3 q^4+2 q^2-4+2 q^{-2} -3 q^{-4} + q^{-6} - q^{-8} + q^{-12} +2 q^{-16} - q^{-18} +2 q^{-20} - q^{-22} + q^{-24} + q^{-28} } |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{66}+q^{62}-q^{60}+q^{58}+q^{56}-q^{54}+2 q^{52}-q^{50}+2 q^{48}-q^{46}+q^{42}-2 q^{40}+4 q^{38}-3 q^{36}+q^{34}+q^{32}-2 q^{30}+3 q^{28}-2 q^{26}+q^{24}+2 q^{22}-2 q^{20}+q^{18}-2 q^{14}+4 q^{12}-4 q^{10}+q^8-3 q^4+3 q^2-5+3 q^{-2} -3 q^{-4} + q^{-8} -4 q^{-10} +4 q^{-12} -2 q^{-14} + q^{-18} -2 q^{-20} +2 q^{-22} + q^{-24} -2 q^{-26} +3 q^{-28} -2 q^{-30} + q^{-32} + q^{-34} -3 q^{-36} +4 q^{-38} -2 q^{-40} + q^{-42} - q^{-46} +2 q^{-48} - q^{-50} +2 q^{-52} - q^{-54} + q^{-56} + q^{-58} - q^{-60} + q^{-62} + q^{-66} } |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["8 3"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -4 t+9-4 t^{-1} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1-4 z^2} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 17, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^4-z^2 a^2-2 z^2-1-z^2 a^{-2} + a^{-4} } |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a z^7+z^7 a^{-1} +a^2 z^6+z^6 a^{-2} +2 z^6+a^3 z^5-4 a z^5-4 z^5 a^{-1} +z^5 a^{-3} +a^4 z^4-2 a^2 z^4-2 z^4 a^{-2} +z^4 a^{-4} -6 z^4-2 a^3 z^3+8 a z^3+8 z^3 a^{-1} -2 z^3 a^{-3} -3 a^4 z^2+a^2 z^2+z^2 a^{-2} -3 z^2 a^{-4} +8 z^2-4 a z-4 z a^{-1} +a^4+ a^{-4} -1} |
Vassiliev invariants
V2 and V3: | (-4, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of 8 3. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | χ | |||||||||
9 | 1 | 1 | |||||||||||||||||
7 | 0 | ||||||||||||||||||
5 | 2 | 1 | 1 | ||||||||||||||||
3 | 1 | -1 | |||||||||||||||||
1 | 2 | 2 | 0 | ||||||||||||||||
-1 | 2 | 2 | 0 | ||||||||||||||||
-3 | 1 | -1 | |||||||||||||||||
-5 | 1 | 2 | 1 | ||||||||||||||||
-7 | 0 | ||||||||||||||||||
-9 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[8, 3]] |
Out[2]= | 8 |
In[3]:= | PD[Knot[8, 3]] |
Out[3]= | PD[X[6, 2, 7, 1], X[14, 10, 15, 9], X[10, 5, 11, 6], X[12, 3, 13, 4], X[4, 11, 5, 12], X[2, 13, 3, 14], X[16, 8, 1, 7], X[8, 16, 9, 15]] |
In[4]:= | GaussCode[Knot[8, 3]] |
Out[4]= | GaussCode[1, -6, 4, -5, 3, -1, 7, -8, 2, -3, 5, -4, 6, -2, 8, -7] |
In[5]:= | BR[Knot[8, 3]] |
Out[5]= | BR[5, {-1, -1, -2, 1, 3, -2, 3, 4, -3, 4}] |
In[6]:= | alex = Alexander[Knot[8, 3]][t] |
Out[6]= | 4 |
In[7]:= | Conway[Knot[8, 3]][z] |
Out[7]= | 2 1 - 4 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[8, 3], Knot[10, 1]} |
In[9]:= | {KnotDet[Knot[8, 3]], KnotSignature[Knot[8, 3]]} |
Out[9]= | {17, 0} |
In[10]:= | J=Jones[Knot[8, 3]][q] |
Out[10]= | -4 -3 2 3 2 3 4 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[8, 3]} |
In[12]:= | A2Invariant[Knot[8, 3]][q] |
Out[12]= | -14 -12 -8 -4 4 8 12 14 -1 + q + q + q - q - q + q + q + q |
In[13]:= | Kauffman[Knot[8, 3]][a, z] |
Out[13]= | 2 2-4 4 4 z 2 3 z z 2 2 4 2 |
In[14]:= | {Vassiliev[2][Knot[8, 3]], Vassiliev[3][Knot[8, 3]]} |
Out[14]= | {0, 0} |
In[15]:= | Kh[Knot[8, 3]][q, t] |
Out[15]= | 2 1 1 2 1 2 3 5 2 |