7 3 Further Notes and Views
Knot presentations
Planar diagram presentation
|
X6271 X10,4,11,3 X14,8,1,7 X8,14,9,13 X12,6,13,5 X2,10,3,9 X4,12,5,11
|
Gauss code
|
1, -6, 2, -7, 5, -1, 3, -4, 6, -2, 7, -5, 4, -3
|
Dowker-Thistlethwaite code
|
6 10 12 14 2 4 8
|
Conway Notation
|
[43]
|
Four dimensional invariants
Polynomial invariants
Alexander polynomial |
|
Conway polynomial |
|
2nd Alexander ideal (db, data sources) |
|
Determinant and Signature |
{ 13, 4 } |
Jones polynomial |
|
HOMFLY-PT polynomial (db, data sources) |
|
Kauffman polynomial (db, data sources) |
|
The A2 invariant |
|
The G2 invariant |
|
Further Quantum Invariants
Further quantum knot invariants for 7_3.
A1 Invariants.
Weight
|
Invariant
|
1
|
|
2
|
|
3
|
|
4
|
|
5
|
|
6
|
|
A2 Invariants.
Weight
|
Invariant
|
1,0
|
|
1,1
|
|
2,0
|
|
3,0
|
|
A3 Invariants.
Weight
|
Invariant
|
0,1,0
|
|
1,0,0
|
|
1,0,1
|
|
A4 Invariants.
Weight
|
Invariant
|
0,1,0,0
|
|
1,0,0,0
|
|
B2 Invariants.
Weight
|
Invariant
|
0,1
|
|
1,0
|
|
D4 Invariants.
Weight
|
Invariant
|
1,0,0,0
|
|
G2 Invariants.
Weight
|
Invariant
|
1,0
|
|
.
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot
5_2) as the notebook
PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
|
Out[5]=
|
|
In[6]:=
|
Alexander[K, 2][t]
|
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
|
In[10]:=
|
Kauffman[K][a, z]
|
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
|
V2,1 through V6,9:
|
V2,1
|
V3,1
|
V4,1
|
V4,2
|
V4,3
|
V5,1
|
V5,2
|
V5,3
|
V5,4
|
V6,1
|
V6,2
|
V6,3
|
V6,4
|
V6,5
|
V6,6
|
V6,7
|
V6,8
|
V6,9
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 7 3. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | χ |
19 | | | | | | | | 1 | -1 |
17 | | | | | | | | | 0 |
15 | | | | | | 2 | 1 | | -1 |
13 | | | | | 1 | | | | 1 |
11 | | | | 1 | 2 | | | | 1 |
9 | | | 1 | 1 | | | | | 0 |
7 | | | 1 | | | | | | 1 |
5 | 1 | 1 | | | | | | | 0 |
3 | 1 | | | | | | | | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Knot[7, 3]] |
Out[2]= | 7 |
In[3]:= | PD[Knot[7, 3]] |
Out[3]= | PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[14, 8, 1, 7], X[8, 14, 9, 13],
X[12, 6, 13, 5], X[2, 10, 3, 9], X[4, 12, 5, 11]] |
In[4]:= | GaussCode[Knot[7, 3]] |
Out[4]= | GaussCode[1, -6, 2, -7, 5, -1, 3, -4, 6, -2, 7, -5, 4, -3] |
In[5]:= | BR[Knot[7, 3]] |
Out[5]= | BR[3, {1, 1, 1, 1, 1, 2, -1, 2}] |
In[6]:= | alex = Alexander[Knot[7, 3]][t] |
Out[6]= | 2 3 2
3 + -- - - - 3 t + 2 t
2 t
t |
In[7]:= | Conway[Knot[7, 3]][z] |
Out[7]= | 2 4
1 + 5 z + 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[7, 3]} |
In[9]:= | {KnotDet[Knot[7, 3]], KnotSignature[Knot[7, 3]]} |
Out[9]= | {13, 4} |
In[10]:= | J=Jones[Knot[7, 3]][q] |
Out[10]= | 2 3 4 5 6 7 8 9
q - q + 2 q - 2 q + 3 q - 2 q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[7, 3]} |
In[12]:= | A2Invariant[Knot[7, 3]][q] |
Out[12]= | 6 10 14 16 18 20 22 24 26 28
q + q + q + 2 q + q + q - q - q - q - q |
In[13]:= | Kauffman[Knot[7, 3]][a, z] |
Out[13]= | 2 2 2 2 3 3
-2 2 -4 2 z z 3 z z 6 z 4 z 3 z z z
-- - -- + a - --- + -- + --- - --- + ---- + ---- - ---- + --- - -- -
8 6 11 9 7 10 8 6 4 11 9
a a a a a a a a a a a
3 3 4 4 4 4 5 5 5 6 6
4 z 2 z z 3 z 3 z z z 2 z z z z
---- - ---- + --- - ---- - ---- + -- + -- + ---- + -- + -- + --
7 5 10 8 6 4 9 7 5 8 6
a a a a a a a a a a a |
In[14]:= | {Vassiliev[2][Knot[7, 3]], Vassiliev[3][Knot[7, 3]]} |
Out[14]= | {0, 11} |
In[15]:= | Kh[Knot[7, 3]][q, t] |
Out[15]= | 3 5 5 7 2 9 2 9 3 11 3 11 4 13 4
q + q + q t + q t + q t + q t + q t + 2 q t + q t +
15 5 15 6 19 7
2 q t + q t + q t |