9 29

From Knot Atlas
Revision as of 20:47, 27 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search


9 28.gif

9_28

9 30.gif

9_30

9 29.gif Visit 9 29's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 29's page at Knotilus!

Visit 9 29's page at the original Knot Atlas!

9 29 Quick Notes


9 29 Further Notes and Views

Knot presentations

Planar diagram presentation X6271 X16,11,17,12 X10,4,11,3 X2,15,3,16 X14,5,15,6 X18,8,1,7 X4,10,5,9 X12,17,13,18 X8,13,9,14
Gauss code 1, -4, 3, -7, 5, -1, 6, -9, 7, -3, 2, -8, 9, -5, 4, -2, 8, -6
Dowker-Thistlethwaite code 6 10 14 18 4 16 8 2 12
Conway Notation [.2.20.2]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-8][-3]
Hyperbolic Volume 12.2059
A-Polynomial See Data:9 29/A-polynomial

[edit Notes for 9 29's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 2

[edit Notes for 9 29's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 51, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (1, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 9 29. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
-5-4-3-2-101234χ
7         11
5        2 -2
3       31 2
1      42  -2
-1     53   2
-3    45    1
-5   44     0
-7  24      2
-9 14       -3
-11 2        2
-131         -1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 29]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 29]]
Out[3]=  
PD[X[6, 2, 7, 1], X[16, 11, 17, 12], X[10, 4, 11, 3], X[2, 15, 3, 16], 
 X[14, 5, 15, 6], X[18, 8, 1, 7], X[4, 10, 5, 9], X[12, 17, 13, 18], 

X[8, 13, 9, 14]]
In[4]:=
GaussCode[Knot[9, 29]]
Out[4]=  
GaussCode[1, -4, 3, -7, 5, -1, 6, -9, 7, -3, 2, -8, 9, -5, 4, -2, 8, -6]
In[5]:=
BR[Knot[9, 29]]
Out[5]=  
BR[4, {1, -2, -2, 3, -2, 1, -2, 3, -2}]
In[6]:=
alex = Alexander[Knot[9, 29]][t]
Out[6]=  
       -3   5    12             2    3

-15 + t - -- + -- + 12 t - 5 t + t

            2   t
t
In[7]:=
Conway[Knot[9, 29]][z]
Out[7]=  
     2    4    6
1 + z  + z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 28], Knot[9, 29], Knot[10, 163], Knot[11, NonAlternating, 87]}
In[9]:=
{KnotDet[Knot[9, 29]], KnotSignature[Knot[9, 29]]}
Out[9]=  
{51, -2}
In[10]:=
J=Jones[Knot[9, 29]][q]
Out[10]=  
      -6   3    6    8    8    9            2    3

-7 - q + -- - -- + -- - -- + - + 5 q - 3 q + q

           5    4    3    2   q
q q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 29]}
In[12]:=
A2Invariant[Knot[9, 29]][q]
Out[12]=  
  -18    -16    2     -12    2    4     -2      2    4    6    10

-q + q - --- - q + --- + -- + q - 2 q + q - q + q

               14           10    6
q q q
In[13]:=
Kauffman[Knot[9, 29]][a, z]
Out[13]=  
                                                                2
     -2      2      4   z            3        5         2   3 z

-3 - a - 5 a - 2 a - - - a z + 2 a z + 2 a z + 12 z + ---- +

                        a                                     2
                                                             a

                         3
     2  2      4  2   9 z          3    3  3      5  3    7  3
 17 a  z  + 8 a  z  + ---- + 14 a z  - a  z  - 5 a  z  + a  z  - 
                       a

            4                                       5
     4   3 z        2  4       4  4      6  4   10 z          5
 11 z  - ---- - 24 a  z  - 13 a  z  + 3 a  z  - ----- - 24 a z  - 
           2                                      a
          a

                           6                          7
    3  5      5  5    6   z       2  6      4  6   3 z         7
 8 a  z  + 6 a  z  - z  + -- + 6 a  z  + 8 a  z  + ---- + 9 a z  + 
                           2                        a
                          a

    3  7      8      2  8
6 a z + 2 z + 2 a z
In[14]:=
{Vassiliev[2][Knot[9, 29]], Vassiliev[3][Knot[9, 29]]}
Out[14]=  
{0, -2}
In[15]:=
Kh[Knot[9, 29]][q, t]
Out[15]=  
5    5     1        2        1       4       2       4       4

-- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- +

3   q    13  5    11  4    9  4    9  3    7  3    7  2    5  2

q q t q t q t q t q t q t q t

  4      4     3 t                2      3  2    3  3      5  3    7  4
 ---- + ---- + --- + 4 q t + 2 q t  + 3 q  t  + q  t  + 2 q  t  + q  t
  5      3      q
q t q t