10 1
|
|
|
|
Visit 10 1's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 1's page at Knotilus! Visit 10 1's page at the original Knot Atlas! |
10 1 Quick Notes |
Knot presentations
| Planar diagram presentation | X1425 X11,14,12,15 X3,13,4,12 X13,3,14,2 X5,20,6,1 X7,18,8,19 X9,16,10,17 X15,10,16,11 X17,8,18,9 X19,6,20,7 |
| Gauss code | -1, 4, -3, 1, -5, 10, -6, 9, -7, 8, -2, 3, -4, 2, -8, 7, -9, 6, -10, 5 |
| Dowker-Thistlethwaite code | 4 12 20 18 16 14 2 10 8 6 |
| Conway Notation | [82] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -4 t+9-4 t^{-1} }[/math] |
| Conway polynomial | [math]\displaystyle{ 1-4 z^2 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 17, 0 } |
| Jones polynomial | [math]\displaystyle{ q^2-q+2-2 q^{-1} +2 q^{-2} -2 q^{-3} +2 q^{-4} -2 q^{-5} + q^{-6} - q^{-7} + q^{-8} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ a^8-z^2 a^6-a^6-z^2 a^4-z^2 a^2-z^2+ a^{-2} }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ a^7 z^9+a^5 z^9+a^8 z^8+2 a^6 z^8+a^4 z^8-7 a^7 z^7-6 a^5 z^7+a^3 z^7-7 a^8 z^6-12 a^6 z^6-4 a^4 z^6+a^2 z^6+16 a^7 z^5+12 a^5 z^5-3 a^3 z^5+a z^5+15 a^8 z^4+21 a^6 z^4+3 a^4 z^4-2 a^2 z^4+z^4-14 a^7 z^3-11 a^5 z^3+a^3 z^3-a z^3+z^3 a^{-1} -10 a^8 z^2-11 a^6 z^2+z^2 a^{-2} +4 a^7 z+4 a^5 z+a^8+a^6- a^{-2} }[/math] |
| The A2 invariant | [math]\displaystyle{ q^{26}+q^{24}-q^{18}-q^{16}+ q^{-2} + q^{-6} + q^{-8} }[/math] |
| The G2 invariant | Data:10 1/QuantumInvariant/G2/1,0 |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | [math]\displaystyle{ q^{17}-q^{11}+ q^{-1} + q^{-5} }[/math] |
| 2 | [math]\displaystyle{ q^{50}-q^{46}-q^{40}+q^{36}+q^{16}+q^{14}-q^4-q^2+ q^{-2} + q^{-8} + q^{-14} }[/math] |
| 3 | [math]\displaystyle{ q^{99}-q^{95}-q^{93}+q^{89}-q^{85}+q^{81}+q^{79}-q^{75}+q^{49}+q^{47}-q^{43}-q^{37}-q^{35}-q^{29}+q^{25}+q^{23}+q^{15}+q^{13}+q^{11}-q^9+q^5+q^3-q- q^{-1} + q^{-3} + q^{-5} - q^{-7} - q^{-9} + q^{-19} + q^{-27} }[/math] |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^{26}+q^{24}-q^{18}-q^{16}+ q^{-2} + q^{-6} + q^{-8} }[/math] |
| 2,0 | [math]\displaystyle{ q^{68}+q^{66}+q^{64}-q^{62}-q^{60}-q^{58}-q^{56}-q^{54}-q^{52}+q^{50}+q^{48}+q^{46}+q^{24}+2 q^{22}+q^{20}+q^{18}+q^{16}-q^{10}-2 q^8-2 q^6-q^4+ q^{-4} + q^{-10} + q^{-12} + q^{-16} + q^{-18} + q^{-20} }[/math] |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 1"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -4 t+9-4 t^{-1} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ 1-4 z^2 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 17, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^2-q+2-2 q^{-1} +2 q^{-2} -2 q^{-3} +2 q^{-4} -2 q^{-5} + q^{-6} - q^{-7} + q^{-8} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ a^8-z^2 a^6-a^6-z^2 a^4-z^2 a^2-z^2+ a^{-2} }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ a^7 z^9+a^5 z^9+a^8 z^8+2 a^6 z^8+a^4 z^8-7 a^7 z^7-6 a^5 z^7+a^3 z^7-7 a^8 z^6-12 a^6 z^6-4 a^4 z^6+a^2 z^6+16 a^7 z^5+12 a^5 z^5-3 a^3 z^5+a z^5+15 a^8 z^4+21 a^6 z^4+3 a^4 z^4-2 a^2 z^4+z^4-14 a^7 z^3-11 a^5 z^3+a^3 z^3-a z^3+z^3 a^{-1} -10 a^8 z^2-11 a^6 z^2+z^2 a^{-2} +4 a^7 z+4 a^5 z+a^8+a^6- a^{-2} }[/math] |
Vassiliev invariants
| V2 and V3: | (-4, 6) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s+1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of 10 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | χ | |||||||||
| 5 | 1 | 1 | |||||||||||||||||||
| 3 | 0 | ||||||||||||||||||||
| 1 | 2 | 1 | 1 | ||||||||||||||||||
| -1 | 1 | 1 | 0 | ||||||||||||||||||
| -3 | 1 | 1 | 0 | ||||||||||||||||||
| -5 | 1 | 1 | 0 | ||||||||||||||||||
| -7 | 1 | 1 | 0 | ||||||||||||||||||
| -9 | 1 | 1 | 0 | ||||||||||||||||||
| -11 | 1 | -1 | |||||||||||||||||||
| -13 | 1 | 1 | 0 | ||||||||||||||||||
| -15 | 0 | ||||||||||||||||||||
| -17 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 1]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 1]] |
Out[3]= | PD[X[1, 4, 2, 5], X[11, 14, 12, 15], X[3, 13, 4, 12], X[13, 3, 14, 2],X[5, 20, 6, 1], X[7, 18, 8, 19], X[9, 16, 10, 17], X[15, 10, 16, 11],X[17, 8, 18, 9], X[19, 6, 20, 7]] |
In[4]:= | GaussCode[Knot[10, 1]] |
Out[4]= | GaussCode[-1, 4, -3, 1, -5, 10, -6, 9, -7, 8, -2, 3, -4, 2, -8, 7, -9, 6, -10, 5] |
In[5]:= | BR[Knot[10, 1]] |
Out[5]= | BR[6, {-1, -1, -2, 1, -2, -3, 2, -3, -4, 3, 5, -4, 5}] |
In[6]:= | alex = Alexander[Knot[10, 1]][t] |
Out[6]= | 4 |
In[7]:= | Conway[Knot[10, 1]][z] |
Out[7]= | 2 1 - 4 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[8, 3], Knot[10, 1]} |
In[9]:= | {KnotDet[Knot[10, 1]], KnotSignature[Knot[10, 1]]} |
Out[9]= | {17, 0} |
In[10]:= | J=Jones[Knot[10, 1]][q] |
Out[10]= | -8 -7 -6 2 2 2 2 2 2 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 1]} |
In[12]:= | A2Invariant[Knot[10, 1]][q] |
Out[12]= | -26 -24 -18 -16 2 6 8 q + q - q - q + q + q + q |
In[13]:= | Kauffman[Knot[10, 1]][a, z] |
Out[13]= | 2 3-2 6 8 5 7 z 6 2 8 2 z |
In[14]:= | {Vassiliev[2][Knot[10, 1]], Vassiliev[3][Knot[10, 1]]} |
Out[14]= | {0, 6} |
In[15]:= | Kh[Knot[10, 1]][q, t] |
Out[15]= | 1 1 1 1 1 1 1 1 |


