10 2
|
|
Visit 10 2's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 2's page at Knotilus! Visit 10 2's page at the original Knot Atlas! |
10 2 Quick Notes |
Knot presentations
Planar diagram presentation | X1425 X5,14,6,15 X3,13,4,12 X13,3,14,2 X7,16,8,17 X9,18,10,19 X11,20,12,1 X15,6,16,7 X17,8,18,9 X19,10,20,11 |
Gauss code | -1, 4, -3, 1, -2, 8, -5, 9, -6, 10, -7, 3, -4, 2, -8, 5, -9, 6, -10, 7 |
Dowker-Thistlethwaite code | 4 12 14 16 18 20 2 6 8 10 |
Conway Notation | [712] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 2"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 23, -6 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (2, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -6 is the signature of 10 2. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | χ | |||||||||
-1 | 1 | 1 | |||||||||||||||||||
-3 | 0 | ||||||||||||||||||||
-5 | 2 | 1 | 1 | ||||||||||||||||||
-7 | 1 | 1 | 0 | ||||||||||||||||||
-9 | 2 | 1 | 1 | ||||||||||||||||||
-11 | 1 | 1 | 0 | ||||||||||||||||||
-13 | 2 | 2 | 0 | ||||||||||||||||||
-15 | 1 | 1 | 0 | ||||||||||||||||||
-17 | 1 | 2 | -1 | ||||||||||||||||||
-19 | 1 | 1 | 0 | ||||||||||||||||||
-21 | 1 | -1 | |||||||||||||||||||
-23 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 2]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 2]] |
Out[3]= | PD[X[1, 4, 2, 5], X[5, 14, 6, 15], X[3, 13, 4, 12], X[13, 3, 14, 2],X[7, 16, 8, 17], X[9, 18, 10, 19], X[11, 20, 12, 1], X[15, 6, 16, 7],X[17, 8, 18, 9], X[19, 10, 20, 11]] |
In[4]:= | GaussCode[Knot[10, 2]] |
Out[4]= | GaussCode[-1, 4, -3, 1, -2, 8, -5, 9, -6, 10, -7, 3, -4, 2, -8, 5, -9, 6, -10, 7] |
In[5]:= | BR[Knot[10, 2]] |
Out[5]= | BR[3, {-1, -1, -1, -1, -1, -1, -1, 2, -1, 2}] |
In[6]:= | alex = Alexander[Knot[10, 2]][t] |
Out[6]= | -4 3 3 3 2 3 4 |
In[7]:= | Conway[Knot[10, 2]][z] |
Out[7]= | 2 4 6 8 1 + 2 z - 5 z - 5 z - z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 2]} |
In[9]:= | {KnotDet[Knot[10, 2]], KnotSignature[Knot[10, 2]]} |
Out[9]= | {23, -6} |
In[10]:= | J=Jones[Knot[10, 2]][q] |
Out[10]= | -11 2 2 3 3 3 3 2 2 -2 1 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 2]} |
In[12]:= | A2Invariant[Knot[10, 2]][q] |
Out[12]= | -32 -26 -24 -22 -20 -18 -14 -10 -8 -6 -4 q - q - q - q - q + q + q + q + q + q + q |
In[13]:= | Kauffman[Knot[10, 2]][a, z] |
Out[13]= | 4 6 8 5 7 9 11 13 4 2 |
In[14]:= | {Vassiliev[2][Knot[10, 2]], Vassiliev[3][Knot[10, 2]]} |
Out[14]= | {0, -2} |
In[15]:= | Kh[Knot[10, 2]][q, t] |
Out[15]= | -7 2 1 1 1 1 1 2 |